Tree Genetics & Genomes

, 11:122 | Cite as

Genetic and phenotypic diversity of natural American oil palm (Elaeis oleifera (H.B.K.) Cortés) accessions

  • Diana Arias
  • María González
  • Fausto Prada
  • Iván Ayala-Diaz
  • Carmenza Montoya
  • Edison Daza
  • Hernán Mauricio Romero
Original Article
Part of the following topical collections:
  1. Germplasm Diversity


Elaeis oleifera has become a valuable genetic resource for the production of interspecific hybrids of E. oleifera (H.B.K) Cortés × Elaeis guineensis Jacq. to address plant disease problems affecting oil palm cultivation. In this study, we evaluated the phenotypic and genetic diversity of accessions of E. oleifera from different countries in South America using morpho-agronomic traits and microsatellite markers (Simple Sequence Repeats, SSRs). Analyses of variance for yield and bunch components demonstrated statistically significant differences among countries and geographical regions for several of the traits evaluated. SSR marker analyses revealed high genetic diversity (HT = 0.797) and the presence of specific alleles by each country of origin from E. oleifera. The clustering topology obtained showed four distinguishable E. oleifera groups, which matched the geographical distribution of the accessions and thus exhibited a high genetic differentiation (GST = 0.512) and a low gene flow Nm = 0.238 among countries. The results enabled us to demonstrate that E. oleifera has a specific genetic structure and a phenotypic variability with different characteristics between origins, and the accessions from each country of origin contributed to the increase in total genetic diversity. A core collection was defined based on the accuracy of the classification of individuals with respect to their country of origin. The information reported in this study will be of great interest to oil palm researchers because new strategies for breeding programs can be developed based on these advances.


Oil palm Genetic resources Core collection Microsatellite markers Genetic differentiation 

Supplementary material

11295_2015_946_MOESM1_ESM.doc (55 kb)
Table S1(DOC 55 kb)


  1. Alvarado A, Escobar R, Henry J (2013) The hybrid O×G Amazon: an alternative for regions affected by bud rot in oil palm. Palmas 34(1):305–314Google Scholar
  2. Arias DM, Montoya C, Romero HM (2010) Preliminary results on the molecular characterization of oil palm using microsatellites markers. PALMAS 31(3):35–45Google Scholar
  3. Arias D, Montoya C, and Romero H (2013a) Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon. Plant Genetic Resources: Characterization and Utilization. doi: (About DOI), Published online: 04 January 2013Google Scholar
  4. Arias D, González M, Prada F, Restrepo E, Romero H (2013b) Morpho-agronomic and molecular characterisation of oil palm Elaeis guineensis Jacq material from Angola. Tree Genet & genomes. doi:10.1007/s11295-013-0637-5, Published online: June 2013 Google Scholar
  5. Barba, J.; Orellana, F.; Vallejo, G.; Manzano, R (2010) Evaluación agronómica de híbridos interespecíficos de palma de aceite OxG (Elaeis oleífera × Elaeis guineensis) provenientes de diversos orígenes americanos y su tolerancia a la pudrición del cogollo. Primera parte. Palma (Ecuador), (3):11–15.Google Scholar
  6. Barcelos E, Amblard P, Berthaud J, Seguin M (2002) Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesq Agrop Brasileira 37(8):1105–1114CrossRefGoogle Scholar
  7. Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P et al (2001) Development, characterization, and across-taxa utility of oil palm (Elaeis guineensis Jacq) microsatellite markers. Genome 44:413–425CrossRefPubMedGoogle Scholar
  8. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  9. Cochard B, Adon B, Rekima S, Billotte N, Desmier de Chenon R, Koutou A, Nouy B, Omoré A, Purba AR, Glazsmann JC, Noyer JL (2009) Geographic and genetic structure of African oil palm diversity suggest new approaches to breeding. Tree Genet Genomes 5:493–504Google Scholar
  10. Corley RHV (1976) The genus Elaeis. In: R.H.V Corley, JJ. Hardon, B.J. Wood (eds.) Oil palm research. Elsevier, Amsterdam, pp. 3–5Google Scholar
  11. Corley RHV, Tinker PB (2003) The oil palm. World agricultural series, 4th edn. Blackwell, OxfordGoogle Scholar
  12. Forero DC, Hormaza P, Romero HM (2012) Phenological growth stages of African oil palm (Elaeis guineensis). Ann Appl Biol 160:56–65CrossRefGoogle Scholar
  13. García JA, Yáñez EE (2000) Aplicación de la metodología alterna para análisis de racimos y muestreo de racimos en tolva. Palmas 21:303–311Google Scholar
  14. Gimlet VN (2002) A computer program for analyzing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  15. Goudet J (2002) Institute of Ecology. Biology Building, UNIL software (FSTAT), version Scholar
  16. Hedrick PW (2005) Genetics of populations, 3rd edn. Jones and Bartlett, BostonGoogle Scholar
  17. Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advance M strategy with a heuristics search for establishing core sets. Bioinformatics 23:2155–2162CrossRefPubMedGoogle Scholar
  18. Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L subsp sativa. BMC Plant Biol 8:31PubMedCentralCrossRefPubMedGoogle Scholar
  19. Li ZC, Zhang HL, Zeng YW, Yang ZY, Shen SQ, Sun CQ, Wang XK (2002) Studies on sampling strategies for establishment of core collection of rice landrace in Yunnan, China. Genet Resources Crop Evol 49:67–74CrossRefGoogle Scholar
  20. Moe KT, Gwag JG, Park YJ (2012) Efficiency of PowerCore in core set development using amplified length polymorphic markers in mungbean. Plant Breed 131:110–117CrossRefGoogle Scholar
  21. Navia EA, Avila RA, Daza EE, Restrepo EF, Romero HM (2014) Assessment of tolerance to bud rot in oil palm under field conditions. Eur J Plant Pathol 140:711–720CrossRefGoogle Scholar
  22. Nei M (1987) Molecular evolutionary genetics. Colombia University Press, New YorkGoogle Scholar
  23. Peakall R, Smouse P (2006) Genetic analysis in Excel. Population genetic software for teaching and research (GENALEX), version 6.0Google Scholar
  24. Perrier X, Jacquemoud-Collet JP (2006) Software (DARwin). Available at
  25. Qu L, Li X, Wu G, Yang N (2005) Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26:99–101CrossRefPubMedGoogle Scholar
  26. SAS (2003) The SAS system for Windows, release 9.1.3. SAS Institute Inc, Cary, NCGoogle Scholar
  27. Singh R et al (2008) Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Cell Mol Biol 63(2):227–235. doi:10.2478/s11756-008-0041-z Google Scholar
  28. Syed RA (1979) Studies on oil palm pollination by insects. Bull ent res 69:213–214CrossRefGoogle Scholar
  29. Torres G, Sarria G, Varon F, Coffey M, Elliot M, Martinez G (2010) First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Dis 94(9):1–163CrossRefGoogle Scholar
  30. Vallejo G, Cassalett DC (1975) Prospects of growing interspecific hybrids of Elaeis oleífera (H.B.K.) Cortez × Africa in oil palm (Elaeis guineensis Jacq.) in Colombia. Revista ICA Colombia 10(1):19–35Google Scholar
  31. Van Hintum T, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetics resources. IPGRI Technical Bulletin No.3 International Plant Genetic Resources Institute, RomeGoogle Scholar
  32. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  33. Wright S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19:395–420CrossRefGoogle Scholar
  34. Yan WG, Rutger N, Bryant R, Bockelman HE, Fjellstrom RG, Chen MH, Tai T, McClung A (2007) Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci 47:869–876. doi:10.2135/cropsci2006.07.0444 CrossRefGoogle Scholar
  35. Zewdie Y, Tong N, Bosland P (2004) Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genet Resour Crop Evol 51:147–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Oil Palm Biology and Breeding Research ProgramColombian Oil Palm Research CenterBogotáColombia
  2. 2.Department of BiologyUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations