Advertisement

Tree Genetics & Genomes

, 11:104 | Cite as

Evidence for local climate adaptation in early-life traits of Tasmanian populations of Eucalyptus pauciflora

  • Archana Gauli
  • René E. Vaillancourt
  • Tanya G. Bailey
  • Dorothy A. Steane
  • Brad M. Potts
Original Article
Part of the following topical collections:
  1. Adaptation

Abstract

Understanding the genetic basis of adaptation to contemporary environments is fundamental to predicting the evolutionary responses of tree species to future climates. Using seedlings grown in a glasshouse from 275 open-pollinated families collected from 37 Tasmanian populations, we studied quantitative genetic variation and adaptation in Eucalyptus pauciflora, a species that is widespread in Tasmania and the alpine regions of mainland Australia. Most traits exhibited significant quantitative genetic variation both within and between populations. While there was little association of the trait-derived Mahalanobis distance among populations with geographic distance or divergence in putatively neutral markers (F ST ), there was strong evidence of climate adaptation for several genetically independent, functional traits associated with ontogenetic maturation, biomass allocation, and biotic interactions. This evidence comprised the following: (i) significantly more differentiation among populations (Q ST) than expected through drift (F ST ); (ii) little association of pairwise population divergence due to drift (F ST ) and trait divergence (Q ST); and (iii) strong correlations of functional traits with Q ST > F ST with potential environmental drivers of population divergence. Correlates with population divergence in quantitative traits include altitude and associated climatic factors, especially maximum temperature of the warmest period and moisture indices. It is argued that small changes in climate, such as a long-term 1 °C increase in the maximum temperature of the warmest period, are likely to affect the adaptation of local populations of the species. However, since there appears to be significant quantitative genetic variation within populations for many key adaptive traits, we argue that populations are likely to maintain significant evolutionary potential.

Keywords

Eucalyptus pauciflora Seedling traits Climatic variables Genetic correlation Adaptation 

Notes

Acknowledgments

This work was funded by Australian Research Council (ARC) Linkage Grants (LP0991026 and LP120200380) in partnership with Greening Australia. We would like to thank our partner organisation, Greening Australia, especially Dr. Neil Davidson. We thank Sascha Wise, Justin Bloomfield, Ian Cummings and Tracey Winterbottom for assistance during seedling trait scoring and Dr. Matthew Hamilton, Paul Tilyard and Assoc. Prof. Greg Jordan for help during analysis. Authors have no conflict of interest to declare.

Data Archiving Statements

Phenotypic and climate data relating to this study are available at: http://eprints.utas.edu.au/22572/.

Supplementary material

11295_2015_930_MOESM1_ESM.docx (319 kb)
ESM 1 (DOCX 318 kb)

References

  1. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:26–42Google Scholar
  2. Agrawal AF, Stinchcombe JR (2009) How much do genetic covariances alter the rate of adaptation? Proc R Soc B Biological Sci 276:1183–1191. doi: 10.1098/rspb.2008.1671 CrossRefGoogle Scholar
  3. Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi: 10.1111/j.1752-4571.2007.00013.x PubMedCentralCrossRefPubMedGoogle Scholar
  4. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Global Chang Biol 19:1645–1661CrossRefGoogle Scholar
  5. Armbruster WS, Schwaegerle KE (1996) Causes of covariation of phenotypic traits among populations. J Evol Biol 9:261–276CrossRefGoogle Scholar
  6. Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, Turner JD (2002) Forest trees of Australia. CSIRO, CanberraGoogle Scholar
  7. Bush D, Kain D, Matheson C, Kanowski P (2011) Marker-based adjustment of the additive relationship matrix for estimation of genetic parameters—an example using Eucalyptus cladocalyx. Tree Genet Genomes 7:23–35CrossRefGoogle Scholar
  8. Bussotti F, Pollastrini M, Holland V, Brueggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113CrossRefGoogle Scholar
  9. Chambel MR, Climent J, Alía R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97CrossRefGoogle Scholar
  10. Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35CrossRefPubMedGoogle Scholar
  11. Climent J, Chambel MR, Lopez R, Mutke S, Alia R, Gil L (2006) Population divergence for heteroblasty in the Canary Island pine (Pinus canariensis, Pinaceae). Am J Bot 93:840–848CrossRefPubMedGoogle Scholar
  12. Close DC, Davidson NJ, Churchill KC, Corkrey R (2010) Establishment of native Eucalyptus pauciflora and exotic Eucalyptus nitens on former grazing land. New For 40:143–152CrossRefGoogle Scholar
  13. Conner JK, Karoly K, Stewart C, Koelling VA, Sahli HF, Shaw FH (2011) Rapid independent trait evolution despite a strong pleiotropic genetic correlation. Am Nat 178:429–441. doi: 10.1086/661907 CrossRefPubMedGoogle Scholar
  14. Crémieux L et al (2008) Potential contribution of natural enemies to patterns of local adaptation in plants. New Phytol 180:524–533CrossRefPubMedGoogle Scholar
  15. Dutkowski G, Potts B (2012) Genetic variation in the susceptibility of Eucalyptus globulus to drought damage. Tree Genet Genomes 8:757–773. doi: 10.1007/s11295-011-0461-8 CrossRefGoogle Scholar
  16. Edelaar PIM, Björklund M (2011) If F ST does not measure neutral genetic differentiation, then comparing it with Q ST is misleading. Or is it? Mol Ecol 20:1805–1812. doi: 10.1111/j.1365-294X.2011.05051.x CrossRefPubMedGoogle Scholar
  17. Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science 294:151–154. doi: 10.1126/science.1063656 CrossRefPubMedGoogle Scholar
  18. Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7:123–139. doi: 10.1111/eva.12112 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Frei ER, Hahn T, Ghazoul J, Pluess AR (2014) Divergent selection in low and high elevation populations of a perennial herb in the Swiss Alps. Alp Bot 124:131–142CrossRefGoogle Scholar
  20. Gauli A, Steane DA, Vaillancourt RE, Potts BM (2014a) Molecular genetic diversity and population structure in Eucalyptus pauciflora subsp. pauciflora (Myrtaceae) on the island of Tasmania. Aust J Bot 62:175–188. doi: 10.1071/BT14036 CrossRefGoogle Scholar
  21. Gauli A, Vaillancourt RE, Steane DA, Bailey TG, Potts BM (2014b) The effect of forest fragmentation and altitude on the mating system of Eucalyptus pauciflora (Myrtaceae). Aust J Bot 61:622–632CrossRefGoogle Scholar
  22. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml User Guide Release 3.0. VSN International Ltd, hemel Hempstead, UKGoogle Scholar
  23. Goodger JQD, Choo TYS, Woodrow IE (2007) Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt. Oecologia 153:799–808. doi: 10.1007/s00442-007-0787-y CrossRefPubMedGoogle Scholar
  24. Guillaume F (2011) Migration-induced phenotypic divergence: the migration-selection balance of correlated traits. Evolution 65:1723–1738. doi: 10.1111/j.1558-5646.2011.01248.x CrossRefPubMedGoogle Scholar
  25. Hamilton MG, Williams DR, Tilyard PA, Pinkard EA, Wardlaw TJ, Glen M, Vaillancourt RE, Potts BM (2013) A latitudinal cline in disease resistance of a host tree. Heredity 110:372–379. doi: 10.1038/hdy.2012.106 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Hancock AM et al (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86. doi: 10.1126/science.1209244 CrossRefPubMedGoogle Scholar
  27. Hangartner S, Laurila A, Räsänen K (2012) Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Qst–Fst correlations. Evolution 66:867–881CrossRefPubMedGoogle Scholar
  28. Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. PerspectPlant Ecol Evol Syst 8:157–178CrossRefGoogle Scholar
  29. Harwood CE (1980) Frost resistance of subalpine Eucalyptus species. I Experiments using a radiation frost room. Aust J Bot 28:587–599. doi: 10.1071/bt9800587 CrossRefGoogle Scholar
  30. Harwood CE (1981) Frost resistance of subalpine Eucalyptus species. II Experiments using the resistance index method of damage assessment. Aust J Bot 29:209–218. doi: 10.1071/bt9810209 CrossRefGoogle Scholar
  31. Hellmann JJ, Pineda-Krch M (2007) Constraints and reinforcement on adaptation under climate change: selection of genetically correlated traits. Biol Conserv 137:599–609. doi: 10.1016/j.biocon.2007.03.018 CrossRefGoogle Scholar
  32. Hofreiter M, Stewart J (2009) Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr Biol 19:R584–R594. doi: 10.1016/j.cub.2009.06.030 CrossRefPubMedGoogle Scholar
  33. Hudson CJ et al (2014) Genetic control of heterochrony in Eucalyptus globulus. Genes Genomes Genet 4:1235–1245Google Scholar
  34. Inc SI (2009) SAS/STAT(R) 9.2 User’s guide, 2nd edn. SAS Institute, Cary, North Carolina, USAGoogle Scholar
  35. Jones TH, Vaillancourt RE, Potts BM (2007) Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forest. Mol Ecol 16:697–707. doi: 10.1111/j.1365-294X.2006.03180.x CrossRefPubMedGoogle Scholar
  36. Jordan GJ, Potts BM, Wiltshire RJE (1999) Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian blue gum). Heredity 83:179–187. doi: 10.1046/j.1365-2540.1999.00570.x CrossRefPubMedGoogle Scholar
  37. Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE (2000) Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Aust J Bot 48:561–567. doi: 10.1071/bt99038 CrossRefGoogle Scholar
  38. Kim E, Donohue K (2013) Local adaptation and plasticity of Erysimum capitatum to altitude: its implications for responses to climate change. J Ecol 101:796–805CrossRefGoogle Scholar
  39. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. doi: 10.1016/j.tree.2007.09.006 CrossRefPubMedGoogle Scholar
  40. Kremer A et al (2012) Long distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. doi: 10.1111/j.1461-0248.2012.01746.x PubMedCentralCrossRefPubMedGoogle Scholar
  41. Kremer A, Potts BM, Delzon S (2014) Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 28:22–36. doi: 10.1111/1365-2435.12169 CrossRefGoogle Scholar
  42. Kurt Y, Gonzalez-Martinez SC, Alia R, Isik K (2012) Genetic differentiation in Pinus brutia Ten. using molecular markers and quantitative traits: the role of altitude. Ann For Sci 69:345–351CrossRefGoogle Scholar
  43. Ladiges PY (1974) Differentiation in some populations of Eucalyptus viminalis Labill. in relation to factors affecting seedling establishment. Aust J Bot 22:471. doi: 10.1071/bt9740471 CrossRefGoogle Scholar
  44. Ladiges PY (1984) A comparative study of trichomes in Angophora Cav. and Eucalyptus L'hérit.—a question of homology. Aust J Bot 32:561–574. doi: 10.1071/bt9840561 CrossRefGoogle Scholar
  45. Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33:402–416CrossRefGoogle Scholar
  46. Latta RG (1998) Differentiation of allelic frequencies at quantitative trait loci affecting locally adaptive traits. Am Nat 151:283–292. doi: 10.1086/286119 CrossRefPubMedGoogle Scholar
  47. Leimu R, Koricheva J (2006) A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: combining the evidence from ecological and agricultural studies. OIKOS 112:1–9CrossRefGoogle Scholar
  48. Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695. doi: 10.1890/03-0786 CrossRefGoogle Scholar
  49. Loney PE, McArthur C, Potts BM, Jordan GJ (2006) How does ontogeny in a Eucalyptus species affect patterns of herbivory by brushtail possums? Funct Ecol 20:982–988CrossRefGoogle Scholar
  50. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. vol book, whole. Sinauer, Sunderland, MAGoogle Scholar
  51. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  52. Marc K, John G (1998) Evolvability. Proc Natl Acad Sci U S A 95:8420–8427. doi: 10.1073/pnas.95.15.8420 CrossRefGoogle Scholar
  53. Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean plants to global change. Environ Exp Bot 103:53–67CrossRefGoogle Scholar
  54. Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903. doi: 10.1046/j.1420-9101.2001.00348.x CrossRefGoogle Scholar
  55. Mimura M, Aitken SN (2007) Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity 99:224–232. doi: 10.1038/sj.hdy.6800987 CrossRefPubMedGoogle Scholar
  56. Montesinos-Navarro A, Wig J, Xavier PF, Tonsor SJ (2011) Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol 189:282–294CrossRefPubMedGoogle Scholar
  57. Muir AP, Biek R, Thomas R, Mable BK (2014) Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol Ecol 23:561–574PubMedCentralCrossRefPubMedGoogle Scholar
  58. Neish PG, Drinnan AN, Ladiges PY (1995) Anatomy of leaf-margin lenticels in Eucalyptus denticulata and three other eucalypts. Aust J Bot 43:211–221. doi: 10.1071/bt9950211 CrossRefGoogle Scholar
  59. Nespolo RF, Roff DA (2014) Testing the aerobic model for the evolution of endothermy: implications of using present correlations to infer past evolution. Am Nat 183:74–83CrossRefPubMedGoogle Scholar
  60. Nicolle D (2006) A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus—Myrtaceae), with special reference to the obligate seeders. Aust J Bot 54:391–407. doi: 10.1071/BT05061 CrossRefGoogle Scholar
  61. O’Reilly-Wapstra JM, Miller AM, Hamilton MG, Williams D, Glancy-Dean N and Potts BM (2013) Chemical variation in a dominant tree species: population divergence, selection and stability. PLoS One 8:e58416Google Scholar
  62. Pabon-Mora N, Gonzalez F (2012) Leaf development, metamorphic heteroblasty and heterophylly in Berberis s. l. (Berberidaceae). Bot Rev 78:463–489CrossRefGoogle Scholar
  63. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  64. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  65. Petit RJ, Hu FS, Dick CW (2008) Forests of the past: a window to future changes. Science 320:1450–1452. doi: 10.1126/science.1155457 CrossRefPubMedGoogle Scholar
  66. Potts BM (1985) Variation in the Eucalyptus gunnii-archeri complex. III Reciprocal transplant trials. Aust J Bot 33(6):687–704CrossRefGoogle Scholar
  67. Potts B, Pederick L (2000) Morphology, phylogeny, origin, distribution and genetic diversity of eucalypts. In: Keane P (ed) Diseases and pathogens of eucalypts. CSIRO Publishing, Collingwood, pp 11–27Google Scholar
  68. Potts B, Wiltshire R (1997) Eucalypt genetics and genecology. In: Williams JE, Woinarski JCZ (eds) Eucalypt ecology: individuals to ecosystems. Cambridge University Press, Cambridge, UK, pp 56–91Google Scholar
  69. Prober SM, Byrne M, McLean EH, Steane DA, Potts BM, Vaillancourt RE, Stock WD (2015) Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front Ecol Evol 3: Article 65Google Scholar
  70. Pryor LD (1956) Variation in snow gum (Eucalyptus pauciflora Sieb.). Proc Linnean Soc NSW 81:299–305Google Scholar
  71. Pryor LD, Johnson LAS (1971) A classification of the eucalypts. Australian National University, CanberraGoogle Scholar
  72. Salgado-Luarte C, Gianoli E (2012) Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am Nat 180:E42–E53CrossRefPubMedGoogle Scholar
  73. Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi: 10.1146/annurev.ecolsys.38.091206.095646 CrossRefGoogle Scholar
  74. Slatyer R (1977) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. IV. Temperature response of four populations grown at different temperatures. Funct Plant Biol 4:583–594. doi: 10.1071/PP9770583 Google Scholar
  75. Slatyer RO (1978) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb ex Spreng VII Relationship between gradients of field temperature and photosynthetic temperature optima in the snowy mountains area. Aust J Bot 26:111–121. doi: 10.1071/bt9780111 CrossRefGoogle Scholar
  76. Slatyer RO, Ferrar PJ (1977) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb ex Spreng II Effects of growth temperature under controlled conditions. Aust J Plant Physiol 4:289–299. doi: 10.1071/pp 9770289 CrossRefGoogle Scholar
  77. Slee AV, Brooker MIH, Duffy SM, West JG (2006) Euclid: eucalypts of Australia, 3rd edn. CSIRO, CanberraGoogle Scholar
  78. Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genomes 2:30–38Google Scholar
  79. Storz JF (2002) Contrasting patterns of divergence in quantitative traits and neutral DNA markers: analysis of clinal variation. Mol Ecol 11:2537–2551CrossRefPubMedGoogle Scholar
  80. Team RDC (2010) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  81. Thomas SC (2011) Genetic vs. phenotypic responses of trees to altitude. Tree Physiol 31:1161–1163CrossRefPubMedGoogle Scholar
  82. Villarreal S, Hollister RD, Johnson DR, Lara MJ, Webber PJ, Tweedie CE (2012) Tundra vegetation change near Barrow, Alaska (1972-2010). Environ Res Lett 7:1–10. doi: 10.1088/1748-9326/7/1/015508 CrossRefGoogle Scholar
  83. Whitaker D, Williams ER, JA J (2002) CycDesigN: A package for the computer generation of experimental designs. CSIRO, CanberraGoogle Scholar
  84. Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17:1885–1896. doi: 10.1111/j.1365-294X.2008.03712.x CrossRefPubMedGoogle Scholar
  85. Whittock SP, Apiolaza LA, Kelly CM, Potts BM (2003) Genetic control of coppice and lignotuber development in Eucalyptus globulus. Aust J Bot 51:57–67. doi: 10.1071/BT02049 CrossRefGoogle Scholar
  86. Williams JE (1991) Biogeographic patterns of three sub-alpine eucalypts in south-east Australia with special reference to Eucalyptus pauciflora Sieb. ex Spreng. J Biogeogr 18:223–230CrossRefGoogle Scholar
  87. Williams J, Ladiges PY (1985) Morphological variation in Victorian, lowland populations of Eucalyptus pauciflora Sieb.ex Spreng. Proc R Soc Victoria 97:31–48Google Scholar
  88. Williams KJ, Potts BM (1996) The natural distribution of Eucalyptus species in Tasmania. Tasforests 8:39–165Google Scholar
  89. Wiltshire RJE, Potts BM, Reid JB (1992) A paedomorphocline in Eucalyptus II. Variation in the E risdonii / E tenuiramis complex. Aust J Bot 39:545–566. doi: 10.1071/bt9910545
  90. Wiltshire RJE, Reid JB, Potts BM (1998) Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii /E. tenuiramis complex. Aust J Bot 46:45–63. doi: 10.1071/BT97020 CrossRefGoogle Scholar
  91. Worth JRP, Jordan GJ, McKinnon GE, Vaillancourt RE (2009) The major Australian cool temperate rainforest tree Nothofagus cunninghamii withstood Pleistocene glacial aridity within multiple regions: evidence from the chloroplast. New Phytol 182:519–532CrossRefPubMedGoogle Scholar
  92. Xu T, Hutchinson M (2010) ANUCLIM Cersion 6.1 user guide. Centre for Resource and Environmental Studies. Australian National University, Canberra, AustraliaGoogle Scholar
  93. Ye Q, Tang F, Wei N, Yao X (2014) Molecular and quantitative trait variation within and among small fragmented populations of the endangered plant species Psilopeganum sinense. Ann Bot 113:79–86PubMedCentralCrossRefPubMedGoogle Scholar
  94. Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77:109–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Archana Gauli
    • 1
  • René E. Vaillancourt
    • 1
  • Tanya G. Bailey
    • 1
  • Dorothy A. Steane
    • 1
    • 2
  • Brad M. Potts
    • 1
  1. 1.School of Biological SciencesUniversity of TasmaniaHobartAustralia
  2. 2.Faculty of Science, Health, Education and Engineering and Collaborative Research NetworkUniversity of the Sunshine CoastMaroochydoreAustralia

Personalised recommendations