Advertisement

Tree Genetics & Genomes

, 11:85 | Cite as

Genetic analysis of the flowering date and number of petals in rose

  • H. Roman
  • M. Rapicault
  • A. S. Miclot
  • M. Larenaudie
  • K. Kawamura
  • T. Thouroude
  • A. Chastellier
  • A. Lemarquand
  • F. Dupuis
  • F. Foucher
  • S. Loustau
  • L. Hibrand-Saint Oyant
Original Article
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

Rose is the ornamental species with the highest financial impact. Floral traits such as the number of petals and the date of flowering are major characteristics of ornamental plants. Our objective is to study the genetic determinism of floral traits: date of flowering and number of petals, which are a major issue for rose breeders. The study was conducted on two interspecific populations interconnected by the male parent: H190 x hybrid of Rosa wichurana (referred to as HW) and “The Fairy” x hybrid of Rosa wichurana (referred to as FW). The number of petals and the date of flowering were scored over 2 and 8 years, respectively. A new HW genetic map covering 468 cM and the already available genetic map of the FW population (Kawamura et al. TAG Theor Appl Genet 122:661–675, 2011) were used for the genetic determinism studies. In each population, half of the hybrids exhibited single flowers (less than 10 petals), whereas the other half revealed double flowers. The number of petals is controlled by the NP gene located on LG3. Additionally, we detected two new major quantitative trait loci (QTLs) on LG2 and LG5, close to RoAP1b and RoRAG, respectively, two genes involved in the control of floral identity. For the date of flowering, three QTLs with a major effect and high stability between years were found on linkage groups 3, 4, and 6, indicating a high stability of QTLs to the changing environment. Candidate genes underlying these QTLs were investigated and key genes were identified. These major QTLs were linked to candidate genes, i.e., the identified QTL on LG4 was linked to RoFT, the one on LG3 to genes involved in gibberellin pathways, and the one on LG6 to RoFD. These QTLs, which are very stable over time, are good candidates to develop markers applicable in marker-assisted selection (MAS).

Keywords

Rose Date of flowering Number of petals Genetic determinism 

Notes

Acknowledgments

We thank Claudine Foubert and the entire team of the experimental unit (INEM) of IRHS for their technical assistance in plant management. Christophe Brouard (UE Horti), Gilles Michel, and Sébastien Pineau are also gratefully acknowledged for their help in collecting data in the field. We thank the PTM ANAN (Muriel Bahut) of the SFR Quasav and the Gentyane platforms (especially Charles Poncet) for the SSR analyses. This research was supported by the CASDAR (compte d’affectation spéciale pour le développement agricole et rural No 1028). We thank Gail Wagman for her comments and the English correction of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Genetic map and QTL data are currently being submitted to GDR, Genome Database for Rosaceae (accession number=tfGDR1012).

Supplementary material

11295_2015_906_MOESM1_ESM.pptx (56 kb)
Fig. 1S Kendall correlations between the two years of the notations of the number of petals within the both populations HW (A, C) and FW (B, D). A scatterplot and correlation test were realized for both populations either the entire population (A, B) or the subgroup of progeny with double flower (C, D). (PPTX 56 kb)
11295_2015_906_MOESM2_ESM.pptx (81 kb)
Fig. S2 Distribution of the ADT (sum of the average daily temperatures) in the HW (A) and FW (B) populations over 7 years (2006 to 2012). Dates for the male parent Rw (♂) and the female parent (♀) are indicated. Only two dates (2012–2013) for the parent H190 are indicated. (PPTX 80 kb)
11295_2015_906_MOESM3_ESM.pptx (44 kb)
Fig. S3 Comparison of the date of flowering in the subgroups of R (recurrent blooming) and NR (non-recurrent blooming) of the two populations HW (A) and FW (B). The date of flowering was expressed as the mean of the ADT. (PPTX 43 kb)
11295_2015_906_MOESM4_ESM.docx (32 kb)
Table S1 (DOCX 32 kb)
11295_2015_906_MOESM5_ESM.docx (52 kb)
Table S2 (DOCX 51 kb)
11295_2015_906_MOESM6_ESM.docx (33 kb)
Table S3 (DOCX 33 kb)

References

  1. Abe M et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056PubMedCrossRefGoogle Scholar
  2. Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092PubMedCrossRefGoogle Scholar
  3. Ahn JH et al (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brachi B et al (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940PubMedCentralPubMedCrossRefGoogle Scholar
  5. Buckler ES et al (2009) The genetic architecture of maize flowering time. Science (Washington) 325:714–718CrossRefGoogle Scholar
  6. Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martinez-Gomez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 29:404–410CrossRefGoogle Scholar
  7. Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: an approach in Murcia (Spain) and the Western Cape (South Africa). Eur J Agron 37:43–55CrossRefGoogle Scholar
  8. Celton JM, Martinez S, Jammes MJ, Bechti A, Salvi S, Legave JM, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392PubMedCrossRefGoogle Scholar
  9. Chmelnitsky I, Colauzzi M, Algom R, Zieslin N (2001) Effects of temperature on phyllody expression and cytokinin content in floral organs of rose flowers. Plant Growth Regul 35:207–214CrossRefGoogle Scholar
  10. Colasanti J, Muszynski MG (eds) (2008) The maize floral transition vol 1. Handbook of maize: its biology. Springer Science, New YorkGoogle Scholar
  11. Crespel L, Chirollet M, Durel CE, Zhang D, Meynet J, Gudin S (2002) Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105:1207–1214PubMedCrossRefGoogle Scholar
  12. Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280CrossRefGoogle Scholar
  13. Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899CrossRefGoogle Scholar
  14. Dirlewanger E et al (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dubois A et al (2010) Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One 5:1–12CrossRefGoogle Scholar
  16. Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses TAG. Theor Appl Genet 111:511–520PubMedCrossRefGoogle Scholar
  17. Fan SH, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930PubMedCrossRefGoogle Scholar
  18. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550–550.e552PubMedCrossRefGoogle Scholar
  19. Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus x domestica Borkh.). Ann Bot 92:199–206PubMedCentralPubMedCrossRefGoogle Scholar
  20. Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, Hibrand-Saint Oyant L (2008) New resources for studying the rose flowering process. Genome 51:827–837PubMedCrossRefGoogle Scholar
  21. Garrod JF, Harris GP (1974) Studies on the glasshouse carnation: effects of temperature and growth substances on petal number. Ann Bot 38:1025–1031Google Scholar
  22. Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23CrossRefGoogle Scholar
  24. Iwata H et al (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125PubMedCrossRefGoogle Scholar
  25. Jung C, Muller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573PubMedCrossRefGoogle Scholar
  26. Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. TAG Theor Appl Genet 122:661–675PubMedCrossRefGoogle Scholar
  27. Koning-Boucoiran CFS et al (2012) The mode of inheritance in tetraploid cut roses. TAG Theor Appl Genet 125:591–607PubMedCrossRefGoogle Scholar
  28. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66PubMedCrossRefGoogle Scholar
  29. Kotoda N et al (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus * domestica Borkh.). Plant Cell Physiol 51:561–575PubMedCrossRefGoogle Scholar
  30. Linde M, Hattendorf A, Kaufmann H, Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. TAG Theor Appl Genet 113:1081–1092PubMedCrossRefGoogle Scholar
  31. Meng J, Li D, Yi T, Yang J, Zhao X (2009) Development and characterization of microsatellite loci for Rosa odorata var. gigantea Rehder & E. H. Wilson (Rosaceae). Conserv Genet 10:1973–1976CrossRefGoogle Scholar
  32. Meynet J, Barrade R, Duclos A, Siadous R (1994) Dihaploid plants of roses (Rosa * hybrida, cv ‘Sonia’) obtained by parthenogenesis induced using irradiated pollen and in vitro culture of immature seeds. Agronomie 14:169–175CrossRefGoogle Scholar
  33. Napp-Zinn K (1985) Arabidopsis thaliana. In: Halevy HA (ed) Handbook of flowering, vol 1. CRC Press, Boca Raton, pp 492–503Google Scholar
  34. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M (2009) Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiol 29:921–926PubMedCrossRefGoogle Scholar
  35. Nishikawa F et al (2010) Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Tree Physiol 30:431–439PubMedCrossRefGoogle Scholar
  36. Oda A et al (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot 63:1461–1477PubMedCentralPubMedCrossRefGoogle Scholar
  37. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897PubMedCrossRefGoogle Scholar
  38. Randoux M et al (2012) Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue. J Exp Bot 63:6543–6554PubMedCentralPubMedCrossRefGoogle Scholar
  39. Remay A, Lalanne D, Thouroude T, le Couviour F, Hibrand-Saint Oyant L, Foucher F (2009) A survey of flowering genes reveals the role of gibberellins in floral control in rose. TAG Theor Appl Genet 119:767–781PubMedCrossRefGoogle Scholar
  40. Roberts AV, Blake PS, Lewis R, Taylor JM, Dunstan DI (1999) The effect of gibberellins on flowering in roses. J Plant Growth Regul 18:113–119PubMedCrossRefGoogle Scholar
  41. Romeu JF, Monforte AJ, Sanchez G, Granell A, Garcia-Brunton J, Badenes ML, Rios G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52PubMedCentralPubMedCrossRefGoogle Scholar
  42. Samach A, Smith HM (2013) Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering. Plant Sci 207:168–176PubMedCrossRefGoogle Scholar
  43. Sanchez-Perez R, Howad W, Dicenta F, Arus P, Martinez-Gomez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318CrossRefGoogle Scholar
  44. Shen L, Chen Y, Su X, Zhang S, Pan H, Huang M (2012) Two FT orthologs from Populus simonii Carriere induce early flowering in Arabidopsis and poplar trees. Plant Cell Tiss Org Cult 108:371–379CrossRefGoogle Scholar
  45. Socquet-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2013) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report 31:387–397CrossRefGoogle Scholar
  46. Spiller M et al (2011) Towards a unified genetic map for diploid roses TAG. Theor Appl Genet 122:489–500PubMedCrossRefGoogle Scholar
  47. Sun Y, Fan Z, Li X, Li J, Yin H (2013) The APETALA1 and FRUITFUL homologs in Camellia japonica and their roles in double flower domestication. Mol Breed 33:821–834CrossRefGoogle Scholar
  48. Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T (2013) Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Sci Rep 3:srep02641Google Scholar
  49. Tanaka N et al (2014) Overexpression of Arabidopsis FT gene in apple leads to perpetual flowering. Plant Biotechnol 31:11–20CrossRefGoogle Scholar
  50. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594PubMedCrossRefGoogle Scholar
  51. Van Ooijen JW (2004) MAPQTL® 5.0 software for the mapping of quantitative trait loci in experimental populations. Plant Research international, WageningenGoogle Scholar
  52. Van Ooijen JW (2006) JoinMap® 4.0 software for the calculation of genetic linkage maps in experimental populations. Plant Research international, WageningenGoogle Scholar
  53. Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC 1 peach population. Acta Horticult 592:291–297Google Scholar
  54. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  55. Wigge PA, Kim M, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science (Washington) 309:1056–1059CrossRefGoogle Scholar
  56. Xing W, Wang Z, Wang X, Bao M, Ning G (2014) Over-expression of an FT homolog from Prunus mume reduces juvenile phase and induces early flowering in rugosa rose. Sci Hortic 172:68–72CrossRefGoogle Scholar
  57. Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F (2013) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum. PLoS One 8:e83023PubMedCentralPubMedCrossRefGoogle Scholar
  58. Zieslin N (1992) Regulation of flower formation in rose plants: a reappraisal. Sci Hortic 49:305–310CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • H. Roman
    • 1
    • 2
    • 3
  • M. Rapicault
    • 1
    • 2
    • 3
  • A. S. Miclot
    • 1
    • 2
    • 3
  • M. Larenaudie
    • 1
    • 2
    • 3
  • K. Kawamura
    • 1
    • 2
    • 3
    • 4
  • T. Thouroude
    • 1
    • 2
    • 3
  • A. Chastellier
    • 1
    • 2
    • 3
  • A. Lemarquand
    • 5
  • F. Dupuis
    • 1
    • 2
    • 3
  • F. Foucher
    • 1
    • 2
    • 3
  • S. Loustau
    • 6
  • L. Hibrand-Saint Oyant
    • 1
    • 2
    • 3
  1. 1.INRA, UMR1345 Institut de Recherche en Horticulture et SemencesBeaucouzéFrance
  2. 2.UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, PRES UNAMUniversité d’AngersAngersFrance
  3. 3.Agrocampus-OuestUMR1345 Institut de Recherche en Horticulture et SemencesAngersFrance
  4. 4.Laboratory of Horticultural Science, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  5. 5.INRA Angers-Nantes Pays de la Loire, UE0449Beaucouzé CedexFrance
  6. 6.LAREMAUniversité d’AngersAngers CedexFrance

Personalised recommendations