Advertisement

Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic and conservation implications

  • Kevin M. PotterEmail author
  • Valerie D. Hipkins
  • Mary F. Mahalovich
  • Robert E. Means
Original Paper
Part of the following topical collections:
  1. Gene Conservation

Abstract

Ponderosa pine (Pinus ponderosa) is among the most broadly distributed conifer species of western North America, where it possesses considerable ecological, esthetic, and commercial value. It exhibits complicated patterns of morphological and genetic variation, suggesting that it may be in the process of differentiating into distinct regional lineages. A robust analysis of genetic variation across the ponderosa pine complex is necessary to ensure the effectiveness of management and conservation efforts given the species’ large distribution, the existence of many isolated disjunct populations, and the potential susceptibility of some populations to climate change and other threats. We used highly polymorphic nuclear microsatellite markers and isozyme markers from 3113 trees in 104 populations to assess genetic variation and structure across the geographic range of ponderosa pine. The results reveal pervasive inbreeding and patterns of genetic diversity consistent with the hypothesis that ponderosa existed in small, as-yet-undetected Pleistocene glacial refugia north of southern Arizona and New Mexico. The substructuring of genetic variation within the species complex was consistent with its division into two varieties, with genetic clusters within varieties generally associated with latitudinal zones. The analyses indicate widespread gene flow and/or recent common ancestry among genetic clusters within varieties, but not between varieties. Isolated disjunct populations had lower genetic variation by some measures and greater genetic differentiation than main-range populations. These results should be useful for decision-making and conservation planning related to this widespread and important species.

Keywords

Biogeography Gene conservation Inbreeding Isozymes Microevolution Microsatellites 

Notes

Acknowledgments

The authors thank the natural resource specialists from government agencies who assisted with the identification and collection of samples. The authors thank Doug Page, Connie Millar, and David Charlet for multiple collections; Jody Mello, Rosanna Hanson, Ricardo Hernandez, Pat Guge, Suellen Carroll, Kristin Motz, Courtney Owens, and Sara Trujillo for laboratory analyses; Mark Lesser for sharing the Pinus contorta primer sequences; and Julie Canavin for manuscript preparation assistance. This project was a cooperative effort between the Bureau of Land Management Wyoming and the National Forest Genetics Laboratory of the United States Department of Agriculture (USDA) Forest Service, Forest Management Staff. It was supported in part through Research Joint Venture Agreement 10-JV-11330146-049 between the Southern Research Station of the USDA Forest Service and North Carolina State University. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion or other products or vendors that also may be suitable.

Data Archiving Statement

Microsatellite and isozyme genotypes at all loci for all samples, as well as population names and coordinates, are archived at TreeGenes (http://dendrome.ucdavis.edu/treegenes/) as TGDR035.

Supplementary material

11295_2015_865_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
11295_2015_865_MOESM2_ESM.docx (856 kb)
ESM 2 (DOCX 856 kb)
11295_2015_865_MOESM3_ESM.docx (24 kb)
ESM 3 (DOCX 23 kb)
11295_2015_865_MOESM4_ESM.docx (40 kb)
ESM 4 (DOCX 40 kb)
11295_2015_865_MOESM5_ESM.docx (39 kb)
ESM 5 (DOCX 39 kb)
11295_2015_865_MOESM6_ESM.docx (627 kb)
ESM 6 (DOCX 626 kb)
11295_2015_865_MOESM7_ESM.docx (21 kb)
ESM 7 (DOCX 21 kb)
11295_2015_865_MOESM8_ESM.docx (18 kb)
ESM 8 (DOCX 17 kb)
11295_2015_865_MOESM9_ESM.docx (351 kb)
ESM 9 (DOCX 351 kb)

References

  1. Anderson RS (1989) Development of the southwestern ponderosa pine forests: What do we really know? In: Tecle A, Covington WW, Hamre RH (eds) Multiresource management of ponderosa pine forests. vol General Technical Report RM-185. United States Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, pp 15–22Google Scholar
  2. Anderson RS (1990) Holocene forest development and paleoclimates within the central Sierra Nevada, California. J Ecol 78(2):470–489CrossRefGoogle Scholar
  3. Anderson RS, Hasbargen J, Koehler PA, Feiler EJ (1999) Late Wisconsin and Holocene subalpine forests of the Markagunt Plateau of Utah, southwestern Colorado Plateau, USA. Arct Antarct Alp Res 31(4):366–378CrossRefGoogle Scholar
  4. Baker RG (1986) Sangamonian (questionable) and Wisconsinian paleoenvironments in Yellowstone National Park. Geol Soc Am Bull 97(6):717–736. doi: 10.1130/0016-7606(1986)97<717:sawpiy>2.0.co;2 CrossRefGoogle Scholar
  5. Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–415PubMedCrossRefGoogle Scholar
  6. Betancourt JL (1990) Late Quaternary biogeography of the Colorado Plateau. In: Betancourt JL, Van Devender TR, Martin PS (eds) Packrat middens: the last 40,000 years of biotic change. The University of Arizona Press, Tucson, pp 259–292Google Scholar
  7. Betancourt JL, Van Devender TR, Martin PS (1990) Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, TucsonGoogle Scholar
  8. Bialozyt R, Ziegenhagen B, Petit RJ (2006) Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J Evol Biol 19(1):12–20. doi: 10.1111/j.1420-9101.2005.00995.x PubMedCrossRefGoogle Scholar
  9. Boys J, Cherry M, Dayanandan S (2005) Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa Pinaceae). Am J Bot 92(5):833–841PubMedCrossRefGoogle Scholar
  10. Brayshaw TC (1997) Washoe and ponderosa pines on Promontory Hill near Merritt, B.C., Canada. Ann Naturhist Mus Wien 99B:673–680Google Scholar
  11. Callaham RZ (2013a) Pinus ponderosa: a taxonomic review with five subspecies in the United States. U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, AlbanyGoogle Scholar
  12. Callaham RZ (2013b) Pinus ponderosa: geographic races and subspecies based on morphological variation. U.S. Department of Agriculture Forest Service, Pacific Southwest Research Station, AlbanyGoogle Scholar
  13. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570CrossRefGoogle Scholar
  14. Chapman TB, Veblen TT, Schoennagel T (2012) Spatiotemporal patterns of mountain pine beetle activity in the southern Rocky Mountains. Ecology 93(10):2175–2185PubMedCrossRefGoogle Scholar
  15. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631PubMedCrossRefGoogle Scholar
  16. Cole K (1983) Late Pleistocene vegetation of Kings Canyon, Sierra Nevada, California. Quat Res 19(1):117–129. doi: 10.1016/0033-5894(83)90031-5 CrossRefGoogle Scholar
  17. Comes HP, Kadereit JW (1998) The effect of quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3(11):432–438CrossRefGoogle Scholar
  18. Conkle MT, Critchfield WB (1988) Genetic variation and hybridization of ponderosa pine. In: Baumgartner DM, Lotan JE (eds) Ponderosa pine: the species and its management. Washington State University Cooperative Extension, Pullman, pp 27–43Google Scholar
  19. Conkle MT, Hodgskiss PD, Nunnally LB, Hunter SC (1982) Starch Gel electrophoresis of conifer seeds: a laboratory manual. Pacific Southwest Forest and Range Experiment Station, United States Department of Agriculture Forest Service, BerkeleyGoogle Scholar
  20. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014PubMedCentralPubMedGoogle Scholar
  21. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10(3):556–557. doi: 10.1111/j.1755-0998.2009.02801.x PubMedCrossRefGoogle Scholar
  22. Critchfield WB (1984) Crossability and relationships of Washoe pine. Madrono 31(3):144–170Google Scholar
  23. Critchfield WB, Allenbaugh GL (1965) Washoe pine on the Bald Mountain Range, California. Madrono 18:63–64Google Scholar
  24. Critchfield WB, Little EL (1966) Geographic distribution of the pines of the world. United States Department of Agriculture Forest Service, WashingtonCrossRefGoogle Scholar
  25. Crookston NL, Rehfeldt GE, Dixon GE, Weiskittel AR (2010) Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics. For Ecol Manag 260(7):1198–1211. doi: 10.1016/j.foreco.2010.07.013 CrossRefGoogle Scholar
  26. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B-Methodol 39(1):1–38Google Scholar
  27. Dong JS, Wagner DB (1994) Paternally inherited chloroplast polymorphism in Pinus: Estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics 136(3):1187–1194PubMedCentralPubMedGoogle Scholar
  28. Durand E, Jay F, Gaggiotti OE, Francois O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26(9):1963–1973. doi: 10.1093/molbev/msp106 PubMedCrossRefGoogle Scholar
  29. Dvorak WS, Potter KM, Hipkins VD, Hodge GR (2009) Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). Int J Plant Sci 170(5):609–626. doi: 10.1086/597780 CrossRefGoogle Scholar
  30. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188PubMedCrossRefGoogle Scholar
  31. Elsik CG, Williams CG (2001) Families of clustered microsatellites in a conifer genome. Mol Gen Genomics 265(3):535–542CrossRefGoogle Scholar
  32. Elsik CG, Minihan VT, Hall SE, Scarpa AM, Williams CG (2000) Low-copy microsatellite markers for Pinus taeda L. Genome 43(3):550–555PubMedCrossRefGoogle Scholar
  33. Eriksson G, Namkoong G, Roberds JH (1993) Dynamic gene conservation for uncertain futures. For Ecol Manag 62(1–4):15–37CrossRefGoogle Scholar
  34. ESRI (2006) ArcMap 9.2. Environmental Systems Research Institute Inc., Redlands, CaliforniaGoogle Scholar
  35. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620PubMedCrossRefGoogle Scholar
  36. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131(2):479–491PubMedCentralPubMedGoogle Scholar
  37. Farjon A (1984) Pines: drawings and descriptions of the genus Pinus. E.J. Brill, LeidenGoogle Scholar
  38. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package), version 3.6. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  39. Gernandt DS, Hernandez-Leon S, Salgado-Hernandez E, de la Rosa JAP (2009) Phylogenetic relationships of Pinus subsection Ponderosae inferred from rapidly evolving cpDNA regions. Syst Bot 34(3):481–491CrossRefGoogle Scholar
  40. Gibson JP, Hamrick JL (1991) Genetic diversity and structure in Pinus pungens (Table Mountain pine) populations. Can J For Res-Revue Can De Rech Forestiere 21(5):635–642CrossRefGoogle Scholar
  41. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86(6):485–486Google Scholar
  42. Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. Plos One 7(9). doi: 10.1371/journal.pone.0045170
  43. Haller JR (1965) The role of 2-needle fascicles in the adaptation and evolution of ponderosa pine. Brittonia 17(4):354–382CrossRefGoogle Scholar
  44. Hamrick JL, Blanton HM, Hamrick KJ (1989) Genetic structure of geographically marginal populations of ponderosa pine. Am J Bot 76(11):1559–1568. doi: 10.2307/2444394 CrossRefGoogle Scholar
  45. Hansen HP (1942) The influence of volcanic eruptions upon post-Pleistocene forest succession in Central Oregon. Am J Bot 29(3):214–219. doi: 10.2307/2437672 CrossRefGoogle Scholar
  46. Hansen HP (1947) Postglacial vegetation of the northern Great Basin. Am J Bot 34(3):164–171. doi: 10.2307/2437371 CrossRefGoogle Scholar
  47. Heuertz M, Hausman JF, Hardy OJ, Vendramin GG, Frascaria-Lacoste N, Vekemans X (2004) Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.). Evolution 58(5):976–988PubMedGoogle Scholar
  48. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58(3):247–276CrossRefGoogle Scholar
  49. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405(6789):907–913PubMedCrossRefGoogle Scholar
  50. Hoff RJ (1988) Susceptibility of ponderosa pine to the needle case fungus Lophodermium baculiferum. U.S. Department of Agriculture Forest Service, Intermountain Research Station, OgdenGoogle Scholar
  51. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss (Buchloe dactyloides (Nutt.) Engelm.). Theor Appl Genet 86(8):927–934. doi: 10.1007/bf00211043 PubMedCrossRefGoogle Scholar
  52. Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291CrossRefGoogle Scholar
  53. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806. doi: 10.1093/bioinformatics/btm233 PubMedCrossRefGoogle Scholar
  54. Jaramillo-Correa JP, Beaulieu J, Khasa DP, Bousquet J (2009) Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Can J For Res-Revue Can De Rech Forestiere 39(2):286–307. doi: 10.1139/x08-181 CrossRefGoogle Scholar
  55. Johansen AD, Latta RG (2003) Mitochondrial haplotype distribution, seed dispersal and patterns of postglacial expansion of ponderosa pine. Mol Ecol 12(1):293–298PubMedCrossRefGoogle Scholar
  56. Jorgensen SM, Hamrick JL (1997) Biogeography and population genetics of whitebark pine, Pinus albicaulis. Can J For Res 27(10):1574–1585CrossRefGoogle Scholar
  57. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17(18):4015–4026. doi: 10.1111/j.1365-294X.2008.03887.x PubMedCrossRefGoogle Scholar
  58. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7(6):991–995. doi: 10.1007/s10592-006-9134-9 CrossRefGoogle Scholar
  59. Karhu A, Vogl C, Moran GF, Bell JC, Savolainen O (2006) Analysis of microsatellite variation in Pinus radiata reveals effects of genetic drift but no recent bottlenecks. J Evol Biol 19(1):167–175PubMedCrossRefGoogle Scholar
  60. Kitchen SG (2010) Historic Fire Regimes of Eastern Great Basin (USA) Mountains Reconstructed from Tree Rings. Ph.D. Dissertation, Brigham Young University, Provo, UtahGoogle Scholar
  61. Kral R (1993) Pinus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico, vol Pteridophytes and Gymnosperms, Vol. 2. Oxford University Press, New York, pp 373–398Google Scholar
  62. La Farge T (1975) Genetic differences in stem form of ponderosa pine grown in Michigan. Silvae Genet 23:211–213Google Scholar
  63. Lascoux M, Palme AE, Cheddadi R, Latta RG (2004) Impact of Ice Ages on the genetic structure of trees and shrubs. Philos T Roy Soc B 359(1442):197–207. doi: 10.1098/rstb.2003.1390 CrossRefGoogle Scholar
  64. Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53(3):769–776CrossRefGoogle Scholar
  65. Latta RG, Linhart YB, Fleck D, Elliot M (1998) Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evolution 52(1):61–67CrossRefGoogle Scholar
  66. Lauria F (1997) The taxonomic status of Pinus washoensis H. Mason & Stockw. (Pinaceae). Ann Naturhist Mus Wien 99:655–671Google Scholar
  67. Lesser MR, Parchman TL, Buerkle CA (2012) Cross-species transferability of SSR loci developed from transciptome sequencing in lodgepole pine. Mol Ecol Resour 12(3):448–455. doi: 10.1111/j.1755-0998.2011.03102.x PubMedCrossRefGoogle Scholar
  68. Libiger O, Nievergelt CM, Schork NJ (2009) Comparison of genetic distance measures using human SNP genotype data. Hum Biol 81(4):389–406PubMedCrossRefGoogle Scholar
  69. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109(2):361–369PubMedCrossRefGoogle Scholar
  70. Littell JS, McKenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western U. S. ecoprovinces, 1916–2003. Ecol Appl 19(4):1003–1021. doi: 10.1890/07-1183.1 PubMedCrossRefGoogle Scholar
  71. Little EL (1971) Atlas of United States Trees. Volume 1. Conifers and Important Hardwoods. Washington, D.CGoogle Scholar
  72. Little EL (1979) Checklist of United States Trees (Native and Naturalized). United States Department of Agriculture, WashingtonGoogle Scholar
  73. Lorenz TJ, Aubry C, Shoal R (2008) A review of the literature on seed fate in whitebark pine and the life history traits of Clark’s nutcracker and pine squirrels. United States Department of Agriculture Forest Service, Pacific Northwest Research Station, PortlandGoogle Scholar
  74. MacDonald GM, Cwynar LC, Whitlock C (1998) The late quaternary dynamics of pines in northern North America. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 122–136Google Scholar
  75. McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86(8):2088–2098CrossRefGoogle Scholar
  76. Meddens AJH, Hicke JA, Ferguson CA (2012) Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol Appl 22(7):1876–1891PubMedCrossRefGoogle Scholar
  77. Mitton JB, Ferrenberg SM (2012) Mountain pine beetle develops an unprecedented summer generation in response to climate warming. Am Nat 179(5):E163–E171. doi: 10.1086/665007 PubMedCrossRefGoogle Scholar
  78. Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9(10):373–375PubMedCrossRefGoogle Scholar
  79. Neale DB, Sederoff RR (1989) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor Appl Genet 77(2):212–216PubMedCrossRefGoogle Scholar
  80. Niebling CR, Conkle MT (1990) Diversity of Washoe pine and comparisons with allozymes of ponderosa pine races. Can J For Res-Revue Can De Rech Forestiere 20(3):298–308. doi: 10.1139/x90-044 CrossRefGoogle Scholar
  81. Norris JR, Jackson ST, Betancourt JL (2006) Classification tree and minimum-volume ellipsoid analyses of the distribution of ponderosa pine in the western USA. J Biogeogr 33(2):342–360CrossRefGoogle Scholar
  82. O’Connell LM, Ritland K, Thompson SL (2008) Patterns of post-glacial colonization by western redcedar (Thuja plicata, Cupressaceae) as revealed by microsatellite markers. Botany 86(2):194–203. doi: 10.1139/b07-124 CrossRefGoogle Scholar
  83. Oliver WW, Ryker RA (1990) Ponderosa Pine. In: Burns RM, Honkala BH (eds) Silvics of North America: 1. Conifers, vol 1. Agricultural Handbook 654. U.S. Department of Agriculture Forest Service, WashingtonGoogle Scholar
  84. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  85. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21(3):111–113. doi: 10.1016/j.tree.2005.11.022 PubMedCrossRefGoogle Scholar
  86. Peloquin RL (1984) The identification of three-species hybrids in the ponderosa pine complex. Southw Nat 29(1):115–122. doi: 10.2307/3670776 CrossRefGoogle Scholar
  87. Perry JP (1991) The Pines of Mexico and Central America. Timber Press, PortlandGoogle Scholar
  88. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90(4):502–503CrossRefGoogle Scholar
  89. Pitel JA, Cheliak WM (1984) Effect of extraction buffers on characterization of isoenzymes from vegetative tissues of five conifer species: a user’s manual. Agriculture Canada, Canadian Forestry Service, Petawawa National Forestry Institute, Chalk RiverGoogle Scholar
  90. Porter SC (1989) Some geological implications of average quaternary glacial conditions. Quat Res 32(3):245–261. doi: 10.1016/0033-5894(89)90092-6 CrossRefGoogle Scholar
  91. Potter KM, Jetton RM, Dvorak WS, Hipkins VD, Rhea R, Whittier WA (2012) Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv Genet 13(2):475–498. doi: 10.1007/s10592-011-0301-2 CrossRefGoogle Scholar
  92. Potter KM, Hipkins VD, Mahalovich MF, Means RE (2013) Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation. Am J Bot 100(8):1562–1579. doi: 10.3732/ajb.1300039 PubMedCrossRefGoogle Scholar
  93. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedCentralPubMedGoogle Scholar
  94. Provan J, Bennett KD (2008) Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol 23(10):564–571. doi: 10.1016/j.tree.2008.06.010 PubMedCrossRefGoogle Scholar
  95. Raymond M, Rousset F (1995) Genepop (version-1.2): population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249Google Scholar
  96. Read RA (1980) Genetic variation in seedling progeny of ponderosa pine provenances vol Forest Science Monograph 23. Society of American Foresters, WashingtonGoogle Scholar
  97. Read RA (1983) Ten-year performance of ponderosa pine provenances in the great plains of North America. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort CollinsCrossRefGoogle Scholar
  98. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230–237CrossRefGoogle Scholar
  99. Rehfeldt GE (1990) Genetic differentiation among populations of Pinus ponderosa from the upper Colorado River basin. Bot Gaz 151(1):125–137CrossRefGoogle Scholar
  100. Rehfeldt GE (1991) A model of genetic variation for Pinus ponderosa in the Inland Northwest (U.S.A.): applications in gene resource management. Can J For Res 21(10):1491–1500CrossRefGoogle Scholar
  101. Rehfeldt GE (1993) Genetic variation in the Ponderosae of the Southwest. Am J Bot 80(3):330–343CrossRefGoogle Scholar
  102. Rehfeldt GE (1999a) Systematics and genetic structure of Ponderosae taxa (Pinaceae) inhabiting the mountain islands of the Southwest. Am J Bot 86(5):741–752PubMedCrossRefGoogle Scholar
  103. Rehfeldt GE (1999b) Systematics and genetic structure of Washoe pine: applications in conservation genetics. Silvae Genet 48(3–4):167–173Google Scholar
  104. Rehfeldt GE, Wilson BC, Wells SP, Jeffers RM (1996) Phytogeographic, taxonomic, and genetic implications of phenotypic variation in the Ponderosae of the Southwest. Southwest Nat 41(4):409–418Google Scholar
  105. Rehfeldt GE, Crookston NL, Warwell MV, Evans JS (2006) Empirical analyses of plant-climate relationships for the western United States. Int J Plant Sci 167(6):1123–1150CrossRefGoogle Scholar
  106. Rehfeldt GE, Leites LP, St Clair JB, Jaquish BC, Saenz-Romero C, Lopez-Upton J, Joyce DG (2014a) Comparative responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: clines in growth potential. For Ecol Manag 324:138–146CrossRefGoogle Scholar
  107. Rehfeldt GE, Leites LP, St Clair JB, Jaquish BC, Saenz-Romero C, Lopez-Upton J, Joyce DG (2014b) Comparative responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: realized climate niches. For Ecol Manag 324:126–137CrossRefGoogle Scholar
  108. Rehfeldt GE, Leites LP, St Clair JB, Jaquish BC, Saenz-Romero C, Lopez-Upton J, Joyce DG (2014c) Comparative responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation. For Ecol Manag 324:147–157CrossRefGoogle Scholar
  109. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  110. SAS Institute Inc. (2008) The SAS System for Windows, Version 9.2. Cary, North CarolinaGoogle Scholar
  111. Sawyer JO (2007) Why are the Klamath Mountains and adjacent North Coast floristically diverse? Fremontia 35(3):3–11Google Scholar
  112. Schaberg PG, DeHayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256(5):855–862. doi: 10.1016/j.foreco.2008.06.038 CrossRefGoogle Scholar
  113. Schmidtling RC, Hipkins VD (1998) Genetic diversity in longleaf pine (Pinus palustris): influence of historical and prehistorical events. Can J For Res-Revue Can De Rech Forestiere 28(8):1135–1145. doi: 10.1139/cjfr-28-8-1135 CrossRefGoogle Scholar
  114. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792PubMedCrossRefGoogle Scholar
  115. Smith RH (1977) Monoterpenes of ponderosa pine xylem resin in western United States. U.S. Department of Agriculture, Forest Service, WashingtonGoogle Scholar
  116. Smith RH, Peloquin RL, Passof PC (1969) Local and regional variation in the monoterpenes of ponderosa pine wood oleoresin. U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, BerkeleyGoogle Scholar
  117. Squillace AE, Silen RR (1962) Racial variation in ponderosa pine. For Sci Monogr 2(2):1–27Google Scholar
  118. Sturgeon KB (1979) Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution 33(3):803–814. doi: 10.2307/2407647 CrossRefGoogle Scholar
  119. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7(4):453–464PubMedCrossRefGoogle Scholar
  120. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1):389–399PubMedCentralPubMedGoogle Scholar
  121. United States Department of Agriculture Forest Service (2012) National Forest Genetics Laboratory, Standard Operating Procedures. National Forest Genetics Laboratory, United States Department of Agriculture Forest Service, Placerville, CaliforniaGoogle Scholar
  122. Van Devender TR (1990) Late Quaternary vegetation and climate of the Chihuahuan desert, United States and Mexico. In: Betancourt JL, Van Devender TR, Martin PS (eds) Packrat middens: the last 40,000 years of biotic change. The University of Arizona Press, Tucson, pp 104–132Google Scholar
  123. Van Devender TR, Spaulding WG (1979) Development of vegegation and climate in the southwestern United States. Science 204(4394):701–710. doi: 10.1126/science.204.4394.701 PubMedCrossRefGoogle Scholar
  124. Van Devender TR, Betancourt JL, Wimberly M (1984) Biogeographic implications of a packrat midden sequence from the Sacramento Mountains, south-central New Mexico. Quat Res 22(3):344–360. doi: 10.1016/0033-5894(84)90028-0 CrossRefGoogle Scholar
  125. Van Devender TR, Thompson RS, Betancourt JL (1987) Vegetation history of the deserts of southwestern North America: the nature and timing of the late Wisconsin-Holocene transition. In: Ruddiman WF, Wright HE Jr (eds) North America and adjacent oceans during the last deglaciation, vol the geology of north america, v. K-3. Geological Society of America, Boulder, pp 323–352CrossRefGoogle Scholar
  126. Van Haverbeke DF (1986) Genetic variation in ponderosa pine: a 15-year test of provenances in the great plains. U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort CollinsCrossRefGoogle Scholar
  127. Wang C-W (1977) Genetics of ponderosa pine. U.S. Department of Agriculture, Forest Service, WashingtonCrossRefGoogle Scholar
  128. Weidman RH (1939) Evidences of racial influence in a 25-year test of ponderosa pine. J Agric Res 59:0855–0887Google Scholar
  129. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370CrossRefGoogle Scholar
  130. Wells OO (1964) Geographic variation in ponderosa pine: I. The ecotypes and their distribution. Silvae Genet 13(4):89–103Google Scholar
  131. Whitlock C, Shafer SL, Marlon J (2003) The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. For Ecol Manag 178(1–2):5–21. doi: 10.1016/s0378-1127(03)00051-3 CrossRefGoogle Scholar
  132. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar
  133. Willyard A, Cronn R, Liston A (2009) Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Mol Phylogenet Evol 52(2):498–511. doi: 10.1016/j.ympev.2009.02.011 PubMedCrossRefGoogle Scholar
  134. Wofford AM, Finch K, Bigott A, Willyard A (2014) A set of plastid loci for use in multiplex fragment length genotyping for intraspecific variation in Pinus (Pinaceace). Appl Plant Sci 2(5):XXXGoogle Scholar
  135. Wright JW, Lemmien WA, Bright JN (1969) Early growth of ponderosa pine ecotypes in Michigan. For Sci 15(2):121–129Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • Kevin M. Potter
    • 1
    Email author
  • Valerie D. Hipkins
    • 2
  • Mary F. Mahalovich
    • 3
  • Robert E. Means
    • 4
  1. 1.Department of Forestry and Environmental ResourcesNorth Carolina State UniversityResearch Triangle ParkUSA
  2. 2.National Forest Genetics LaboratoryUSDA Forest ServicePlacervilleUSA
  3. 3.Genetic Resource Program, Northern, Rocky Mountain, Southwestern and Intermountain RegionsUSDA Forest ServiceMoscowUSA
  4. 4.Bureau of Land Management WyomingCheyenneUSA

Personalised recommendations