Tree Genetics & Genomes

, 11:4 | Cite as

Diversity in the breadfruit complex (Artocarpus, Moraceae): genetic characterization of critical germplasm

  • Nyree Zerega
  • Tyr Wiesner-Hanks
  • Diane Ragone
  • Brian Irish
  • Brian Scheffler
  • Sheron Simpson
  • Francis Zee
Original Paper


Breadfruit (Artocarpus altilis, Moraceae) is a traditional staple crop in Oceania and has been introduced throughout the tropics. This study examines important germplasm collections of breadfruit and its closest wild relatives and aims to (1) characterize genetic diversity, including identification of unknown and duplicate accessions, (2) evaluate genetic structure and hybridization within the breadfruit complex, and (3) compare utility of microsatellite markers to previously reported amplified fragment length polymorphism (AFLP) and isozyme markers in differentiating among cultivars. Data for 19 microsatellite loci were collected for 349 individuals (representing 255 accessions) including breadfruit (A. altilis), two wild relatives (Artocarpus camansi and Artocarpus mariannensis), and putative hybrids (A. altilis × A. mariannensis). Accessions were of mixed ploidy and regional origin, but predominantly from Oceania. Microsatellite loci collectively had a polymorphic information content (PIC) of 0.627 and distinguished 197 unique genotypes sorted into 129 different lineages, but a single genotype accounts for 49 % of all triploid breadfruit examined. Triploid hybrids and diploid A. altilis exhibited the highest levels of diversity as measured by allele number and gene diversity. Most accessions (75 %) of unknown origin matched either a known genotype or lineage group in the collection. Putative hybrids all had genetic contributions from A. mariannensis but ranged in the level of genetic contribution from A. altilis. Microsatellite markers were found to be more informative than isozyme markers and slightly less informative, with regard to accession discrimination, than AFLP markers. This set of microsatellite markers and the dataset presented here will be valuable for breadfruit germplasm management and conservation.


Breadfruit Artocarpus Germplasm conservation management Microsatellites Plant genetic resources Underutilized crops 



The authors thank the Breadfruit Institute and the USDA/ARS National Plant Germplasm System for use of plant material, Ian Cole for collecting the samples at Kahanu Garden at NTBG, the Trustees and Fellows of NTBG for their support of the Breadfruit Institute, and two reviewers who provided valuable feedback that improved the manuscript. The research was made possible in part by National Science Foundation Grant DEB-0919119 and support from USDA/ARS and the Chicago Botanic Garden.

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Information on germplasm materials used in this study are publicly available online through NTBG ( and the ARS’s GRIN databases (

Supplementary material

11295_2014_824_MOESM1_ESM.xlsx (82 kb)
Online Resource 1 Data from Table 1 is provided in a spreadsheet so that it may be manipulated by users who would like to sort by different criteria (XLSX 81 kb)


  1. Adebowale KO, Olu-Oqolabi BI, Olawumi EK, Lawal OS (2005) Functional properties of native, physically and chemically modified breadfruit (Artocarpus altilis) starch. Ind Crops Prod 21:343–351CrossRefGoogle Scholar
  2. Baric S, Wagner J, Storti A, Dalla Via J (2010) Application of an extended set of microsatellite DNA markers for the analysis of presumed synonym cultivars of apple. Acta Hortic 918:303–308Google Scholar
  3. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedCentralPubMedGoogle Scholar
  4. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106. doi: 10.1111/j.1365-294X.2004.02209.x CrossRefPubMedGoogle Scholar
  5. Buerkle CA (2005) Maximum-likelihood estimation of a hybrid index based on molecular markers. Mol Ecol Notes 5:684–687CrossRefGoogle Scholar
  6. Clark LV, Jasieniuk M (2011) POLYSAT: an R package for polyploid microsatellite analysis. Mol Ecol Resour 11:562–566. doi: 10.1111/j.1755-0998.2011.02985.x CrossRefPubMedGoogle Scholar
  7. Creste S, Neto AT, Vencovsky R, De OSilva S, Figueira A (2004) Genetic diversity of Musa diploid and triploid accessions from the Brazilian banana breeding program estimated by microsatellite markers. Genet Resour Crop Evol 51:723–733CrossRefGoogle Scholar
  8. de Jesus ON, de Oliveira S, Amorim EP, Ferreira CF, Salabert JM, de Campos, de Gaspari-Silva G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol. 13:41. doi: 10.1186/1471-2229-13-41
  9. De Silva HN, Hall AJ, Rikkerink E, McNeilage MA, Fraser LG (2005) Estimation of allele frequencies in polyploids under certain patterns of inheritance. Heredity 95:327–334. doi: 10.1038/sj.hdy.6800728 CrossRefPubMedGoogle Scholar
  10. Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting-peak ratios) method. Theor Appl Genet 109:402–408. doi: 10.1007/s00122-004-1645-5 CrossRefPubMedGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–20CrossRefPubMedGoogle Scholar
  12. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedCentralPubMedGoogle Scholar
  13. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.Google Scholar
  14. Fosberg FR (1960) Introgression in Artocarpus in Micronesia. Brittonia 12:101–113CrossRefGoogle Scholar
  15. Fownes JH, Raynor WC (1991) Seasonality and yield of breadfruit cultivars in the indigenous agroforestry system of Pohnpei, Federated States of Micronesia. Trop Ag (Trinidad) 70(2):103–9Google Scholar
  16. Ghislain M, Spooner DM, Rodriguez F, Villamon F, Nuñez J, Vásquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890. doi: 10.1007/s00122-003-1494-1497 CrossRefPubMedGoogle Scholar
  17. Giraldo E, Lopez-Corrales M, Hormaza JI (2008) Optimization of the management of an ex-situ germplasm bank in common fig with SSRs. J Am Soc Hort Sci 133(1):69–77Google Scholar
  18. Gunn BF, Aradhya M, Salick JM, Miller AJ, Yang YP, Liu L, Hai X (2010) Genetic variation in walnuts (Juglans regia L. and J. sigillata Dode, Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97:60–671CrossRefGoogle Scholar
  19. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi: 10.1046/j.1471-8278.2002.00305.x CrossRefGoogle Scholar
  20. Hirano R, Oo TH, Watanabe KN (2010) Myanmar mango landraces reveal genetic uniqueness over common cultivars from Florida, India, and Southeast Asia. Genome 53:321–330CrossRefPubMedGoogle Scholar
  21. Hoshino AA, Bravo JP, Nobile PM, Morelli KA (2012) Microsatellites as tools for genetic diversity analysis. In: Caliskan M (ed) Genetic diversity in microorganisms. In Tech, Croatia, pp 149–170Google Scholar
  22. Irish BM, Cuevas HE, Simpson SA, Scheffler BE, Sardos J, Ploetz R, Goenaga R (2014) Musa spp. germplasm management: microsatellite fingerprinting of USDA–ARS national plant germplasm system collection. Crop Sci 54:2140–2151Google Scholar
  23. Jones AMP, Murch SJ, Ragone D (2010) Diversity of breadfruit (Artocarpus altilis, Moraceae) seasonality: a resource for year-round nutrition. Econ Bot 64(4):340–351CrossRefGoogle Scholar
  24. Jones AMP, Ragone D, Aiona K, Lane WA, Murch SJ (2011) Nutritional and morphological diversity of breadfruit (Artocarpus, Moraceae): identification of elite cultivars for food security. J Food Compos Anal 24:1091–1102. doi: 10.1016/j.jfca.2011.04.002 CrossRefGoogle Scholar
  25. Jones AMP, Baker R, Ragone D, Murch SJ (2013) Identification of pro-vitamin A carotenoid-rich cultivars of breadfruit (Artocarpus, Moraceae). J Food Compos Anal 31(1):51–61. doi: 10.1016/j.jfca.2013.03.003 CrossRefGoogle Scholar
  26. Korir NK, Li Y, Leng XP, Wu Z, Wang C, Fan JG (2013) A novel and efficient strategy for practical identification of tomato (Solanum lycopersicon) varieties using modified RAPD fingerprints. Genet Mol Res 12(2):1816–1828CrossRefPubMedGoogle Scholar
  27. Lai Y, Sun F (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol 20(12):2123–2131Google Scholar
  28. Leakey CLA, (1977) Breadfruit reconnaissance study in the Caribbean region. CIAT/InterAmerican Development BankGoogle Scholar
  29. Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77. doi: 10.1186/1471-2156-11-77 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Markham C (1904) The voyages of Pedro Fernandez de Quiros. Hakluyt Society, London, pp 1595–1606, Vol. IGoogle Scholar
  31. McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144CrossRefGoogle Scholar
  32. Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi: 10.1111/j.1471-8286.2004.00770.x CrossRefGoogle Scholar
  33. Mengoni A, Gori A, Bazzicalupo M (2000) Use of RAPD and microsatellite (SSR) variation to assess genetic relationships among populations of tetraploid alfalfa, Medicago sativa. Plant Breed 119:311–317CrossRefGoogle Scholar
  34. Miller A, Gross BL (2011) From forest to field: perennial fruit crop domestication. Am J Bot 98(9):1389–414CrossRefPubMedGoogle Scholar
  35. Moe KT, Kwon SW, Park YJ (2012) Trends in genomic and molecular marker systems for the development of some underutilized crops. Genes Genom 34:451–466CrossRefGoogle Scholar
  36. Morton JF (1990) Under-exploited fruit-vegetables can enhance the world food supply. Acta Hortic 275:401–408Google Scholar
  37. Motilal LA, Zhang D, Mischke S, Meinhardt LW, Umaharan P (2013) Microsatellite-aided detection of genetic redundancy improves management of the international Cocoa Genebank, Trinidad. Tree Genet Genomes 9:1395–1411CrossRefGoogle Scholar
  38. Omubuwajo TO (2007) Breadfruit as a key component of sustainable livelihoods in Nigeria: prospects, opportunities and challenges. Acta Hortic 757:121–124Google Scholar
  39. Powell D (1977) Voyage of the plant nursery, HMS providence. Econ Bot 31:387–431, 1791–1793CrossRefGoogle Scholar
  40. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–59PubMedCentralPubMedGoogle Scholar
  41. Ragone D (1991) Collection, establishment and evaluation of a germplasm collection of Pacific Island breadfruit. Dissertation, University of HawaiiGoogle Scholar
  42. Ragone D (1995) Description of Pacific Island breadfruit cultivars. Acta Hortic 413:93–98Google Scholar
  43. Ragone D (1997) Breadfruit: Artocarpus altilis (Parkinson) Fosberg. Promoting the conservation and use of underutilized and neglected crops 10. IPGRI, Inter Plant Genetic Resources Inst, RomeGoogle Scholar
  44. Ragone D (2001) Chromosome numbers and pollen stainability of three species of Pacific Island breadfruit (Artocarpus, Moraceae). Am J Bot 88(4):693–696CrossRefPubMedGoogle Scholar
  45. Ragone D (2007) Breadfruit: diversity, conservation, and potential. Acta Hortic 757:19–30Google Scholar
  46. Ragone D, Cavaletto CG (2006) Sensory evaluation of fruit quality and nutritional composition of 20 breadfruit (Artocarpus, Moraceae) cultivars. Econ Bot 60(5):335–346CrossRefGoogle Scholar
  47. Ragone D, Wiseman J (2007) Developing and applying descriptors for breadfruit germplasm. Acta Hortic 757:71–80Google Scholar
  48. Ragone D, Tavana G, Stevens JM, Stewart PA, Stone R, Cox PM, Cox PA (2004) Nomenclature of breadfruit cultivars in Samoa: saliency, ambiguity, and mononomiality. J Ethnobiol 24(1):33–49Google Scholar
  49. Rajora OP, Rahman MH (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor Appl Genet 106:470–477PubMedGoogle Scholar
  50. Roberts-Nkrumah LB (2007) An overview of breadfruit (Artocarpus altilis) in the Caribbean. Acta Hortic 757:51–60Google Scholar
  51. Schnell RJ, Brown JS, Olano CT, Meerow AW, Campbell RJ, Khun DN (2006) Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. J Am Soc Hort Sci 131(2):214–224Google Scholar
  52. Szikriszt B, Hegedüs A, Halász J (2011) Review of genetic diversity studies in almond (Prunus dulcis). Acta Agronom 59(4):379–395Google Scholar
  53. Taylor M, Kete T, Tuia V (2009) Underutilized species in the Pacific: an untapped source of nutritional and economic wealth. Acta Hortic 806:235–240Google Scholar
  54. Tomiuk J, Guldbrandtsen B, Loeschcke V (2009) Genetic similarity of polyploids: a new version of the computer program POPDIST (version 1.2.0) considers intraspecific genetic differentiation. Mol Ecol Resour 9:1364–1368. doi: 10.1111/j.1755-0998.2009.02623.x CrossRefPubMedGoogle Scholar
  55. Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Diez CM (2013) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes. doi: 10.1007/s11295-013-0671-3 Google Scholar
  56. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  57. Wilder GP (1928) Breadfruit of Tahiti. B.P. Bishop museum. Bulletin 50, HonoluluGoogle Scholar
  58. Witherup C, Ragone D, Wiesner-Hanks T, Irish B, Scheffler B, Simpson, Zee F, Zuberi MI, Zerega NJC (2013) Development of microsatellite loci in Artocarpus altilis (Moraceae) and cross-amplification in congeneric species. Appl Plant Sci 1(7):1200423. doi: 10.3732/apps.1200423 Google Scholar
  59. Wootton M, Tumaalii F (1984) Breadfruit production, utilisation and composition—a review. Food Tech 37(10):464–465Google Scholar
  60. Wünsch A, Hormaza JI (2007) Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Scientia Hortic 113(1):37–43CrossRefGoogle Scholar
  61. Wünsch A, Carrera M, Hormaza JI (2006) Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genet Resour Crop Ev 53:925–932CrossRefGoogle Scholar
  62. Xuan H, Ding Y, Spann D, Möller O, Büchele M, Neumüller M (2011) Microsatellite markers (SSR) as a tool to assist in identification of European plum (Prunus domestica). Acta Hortic 918:689–692Google Scholar
  63. Zerega NJC, Ragone D, Motley TJ (2004) Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot 91(5):760–6CrossRefPubMedGoogle Scholar
  64. Zerega NJC, Ragone D, Motley TJ (2005) Systematics and species limits of breadfruit (Artocarpus, Moraceae). Sys Bot 30:603–15CrossRefGoogle Scholar
  65. Zerega NJC, Ragone D, Motley TJ (2006) Breadfruit origins, diversity, and human-facilitated distribution. In: Motley TJ, Zerega NJC, Cross H (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 213–238Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nyree Zerega
    • 1
    • 2
  • Tyr Wiesner-Hanks
    • 1
  • Diane Ragone
    • 3
  • Brian Irish
    • 4
  • Brian Scheffler
    • 5
  • Sheron Simpson
    • 5
  • Francis Zee
    • 6
  1. 1.Plant Biology and ConservationNorthwestern UniversityEvanstonUSA
  2. 2.Department of Plant ScienceChicago Botanic GardenGlencoeUSA
  3. 3.Breadfruit InstituteNational Tropical Botanical GardenKalaheoUSA
  4. 4.Tropical Agriculture Research StationUSDA-ARSMayagüezPuerto Rico
  5. 5.Genomics and Bioinformatics Research UnitUSDA-ARSStonevilleUSA
  6. 6.Pacific Basin Agricultural Research Center (PBARC)USDA-ARSHiloUSA

Personalised recommendations