Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characterization and comparison of EST-SSRs in Salix, Populus, and Eucalyptus

  • 255 Accesses

  • 6 Citations


Simple sequence repeats (SSRs) are molecular markers with great potential for plant genetic studies. With the development of high-throughput sequencing techniques, transcriptome sequencing projects provide valuable resources of expressed sequence tags (ESTs) for developing SSRs. To investigate the variation of EST-SSRs in different trees, three large EST databases of genera Salix, Populus, and Eucalyptus were compared for EST-SSR characteristics. The SSR-containing ESTs took account of 4.3, 8.4, and 12.2 % of the total number of ESTs for Salix, Populus, and Eucalyptus, respectively. The correlation between the repeat number and the motif type was negative, while that of the repeat number with the total SSR length or the number of SSRs was positive. Tri-nucleotide repeats were the most abundant motif type for Salix (47.7 %) and Eucalyptus (44.5 %), whereas di-nucleotide was the most common for Populus (38.8 %). The AG/CT repeat was the most abundant motif detected in all these trees. The most abundant tri- and tetra-nucleotide repeat motifs were AAG/CTT and AAAG/CTTT, respectively, for both Salix and Populus, while those were CCG/CGG and AGCG/CGCT for Eucalyptus. The EST-SSRs tended to occur in A/T-rich regions, and their repeat motif length appeared to decrease in variation with repeat numbers. These results may provide a deep insight into the characteristics of EST-SSRs in Salix, Populus, and Eucalyptus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Ayers NM, McClung AM, Larkin PD et al (1997) Microsatellites and a single nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germplasm. Theor Appl Genet 94(6–7):773–781. doi:10.1007/s001220050477

  2. Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9(1):49–56. doi:10.1016/j.tplants.2003.11.006

  3. Cardle L, Ramsay L, Milbourne D et al (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156(2):847–854

  4. Ceresini PC, Silva CLSP, Missio RF et al (2005) Satellypus: analysis and database of microsatellites from ESTs of Eucalyptus. Genet Mol Biol 28(3):589–600. doi:10.1590/S1415-47572005000400014

  5. Dai XG, Hu QJ, Cai QL et al (2014) The willow genome and divergent evolution from poplar after the common genome duplication. Cell Res 24(10):1274–1277. doi:10.1038/cr.2014.83

  6. Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510. doi:10.1038/nrg3012

  7. Du FK, Xu F, Qu H et al (2013) Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to develop and characterize new EST-SSR markers and construct an EST-SSR database. PLoS ONE 8(4):e61337. doi:10.1371/journal.pone.0061337

  8. Edwards CE, Parchman TL, Weekley C (2012) Assembly, gene annotation and marker development using 454 floral transcriptome sequences in Ziziphus celata (Rhamnaceae), a highly endangered, Florida endemic plant. DNA Res 19(1):1–9. doi:10.1093/dnares/dsr037

  9. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99(2):125–132. doi:10.1038/sj.hdy.6801001

  10. Gao C, Tang Z, Yin J et al (2011) Characterization and comparison of gene-based simple sequence repeats across Brassica species. Mol Genet Genomics 286(2):161–170. doi:10.1007/s00438-011-0636-x

  11. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179(4):911–929. doi:10.1111/j.1469-8137.2008.02503.x

  12. Grattapaglia D, Vaillancourt RE, Shepherd M et al (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8(3):463–508. doi:10.1007/s11295-012-0491-x

  13. Hanley S, Mallott M, Karp A (2006) Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet Genomes 3(1):35–48. doi:10.1007/s11295-006- 0049-x

  14. He XD, Wang Y, Li FG et al (2012) Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae). Am J Bot 99(4):e134–e148. doi:10.3732/ajb.1100442

  15. He XD, Zheng JW, Serapiglia M et al (2014) Development, characterization and cross-amplification of eight EST-derived microsatellites in Salix. Silvae Genet 63(3):113–115

  16. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877. doi:10.1101/gr.9.9.868

  17. Huang H, Lu J, Ren ZB et al (2011) Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping. Mol Breed 28(2):241–254. doi:10.1007/s11032-010-9477-2

  18. Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458. doi:10.1146/annurev.arplant.58.032806.103956

  19. Kalia RK, Rai MK, Kalia S et al (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177(3):309–334. doi:10.1007/s10681-010-0286-9

  20. Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22(5):253–259. doi:10.1016/j.tig.2006.03.005

  21. Kim KS, Ratcliffe ST, French BW et al (2008) Utility of EST-derived SSRs as population genetics markers in a beetle. J Hered 99(2):112–124. doi:10.1093/jhered/esm104

  22. Kumpatla SP, Mukhopadhyay S (2005) Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species. Genome 48(6):985–998. doi:10.1139/g05-060

  23. Li SX, Yin TM (2007) Map and analysis of microsatellites in genome of Populus: the first sequenced perennial plant. Sci China C Life Sci 50(5):690–699. doi:10.1007/s11427-007-0073-6

  24. Li YC, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11(12):2453–2465. doi:10.1046/j.1365-294X.2002.01643.x

  25. Li YC, Korol AB, Fahima T et al (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21(6):991–1007. doi:10.1093/molbev/msh073

  26. Li SX, Zhang XY, Wang YY et al (2010a) Content and characteristics of microsatellites detected in expressed sequence tag sequences in Eucalyptus. Chin Bull Bot 45(3):363–371. doi:10.3969/j.issn. 1674-3466.2010.03.008

  27. Li SX, Zhang X, Yin TM (2010b) Characteristics of microsatellites in the transcript sequences of the Laccaria bicolor genome. J Microbiol Biotechnol 20(3):474–479. doi:10.4014/jmb.0909.09014

  28. Lindegaard KN, Barker JHA (1997) Breeding willows for biomass. Asp Appl Biol 49:155–162

  29. Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10(1):72–80. doi:10.1101/gr.10.1.72

  30. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200. doi:10.1038/ng822

  31. Pashley CH, Ellis JR, McCauley DE et al (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97(4):381–388. doi:10.1093/jhered/esl013

  32. Rabello E, de Souza AN, Saito D et al (2005) In silico characterization of microsatellites in Eucalyptus spp.: abundance, length variation and transposon associations. Genet Mol Biol 28(3):582–588. doi:10.1590/S1415- 47572005000400013

  33. Santos RMF, Clement D, Lemos LSL et al (2013) Identification, characterization and mapping of EST-derived SSRs from the cacao-Ceratocystis cacaofunesta interaction. Tree Genet Genomes 9(1):117–127. doi:10.1007/s11295- 012-0539-y

  34. Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20(2):211–215. doi:10.1093/nar/20.2.211

  35. Sharma RK, Bhardwaj P, Negi R et al (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L). BMC Plant Biol 9:53. doi:10.1186/1471-2229-9-53

  36. Simko I (2009) Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 100(2):256–262. doi:10.1093/jhered/esn072

  37. Smart LB, Cameron KD (2008) Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop. Genetic improvement of bioenergy crops. Springer, New York, pp 377–396

  38. Squirrell J, Hollingsworth PM, Woodhead M et al (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12(6):1339–1348. doi:10.1046/j.1365-294X.2003.01825.x

  39. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

  40. Temnykh S, Declerck G, Lukashova A et al (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452. doi:10.1101/gr.184001

  41. Tu ZY (1982) Breeding and cultivation of Salix. Jiangsu Science and Techology Press, Nanjing

  42. Tuskan GA, Gunter LE, Yang ZK et al (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J Forest Res 34(1):85–93. doi:10.1139/x03-283

  43. Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi:10.1126/science.1128691

  44. Ueno S, Moriguchi Y, Uchiyama K et al (2012) A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13:136. doi:10.1186/1471-2164-13-136

  45. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55. doi:10.1016/j.tibtech.2004.11.005

  46. Victoria FC, da Maia LC, de Oliveira A (2011) In silico comparative analysis of SSR markers in plants. BMC Plant Biol 11:15. doi:10.1186/1471-2229-11-15

  47. Wen Q, Xu LC, Gu YC et al (2012) Development of polymorphic microsatellite markers in Camellia chekiangoleosa (Theaceae) using 454-ESTs. Am J Bot 99(5):e203–e205. doi:10.3732/ajb.1100486

  48. Xu YL, Cai NH, Kang XY et al (2012) Development and characterization of EST-SSR markers in woody plants. Chin Agri Sci Bull 28(04):1–7

  49. Yasodha R, Sumathi R, Chezhian P et al (2008) Eucalyptus microsatellites mined in silico: survey and evaluation. J Genet 87(1):21–25. doi:10.1007/s12041-008-0003-9

  50. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11(1):1–16. doi:10.1046/j.0962-1083.2001.01418.x

  51. Zhou CP, He XD, Li FG et al (2014) Development of 240 novel EST-SSRs in Eucalyptus L’Hérit. Mol Breed 33(1):221–225. doi:10.1007/s11032-013-9923-z

Download references


This work was financially supported by Jiangsu Provincial Natural Science Foundation (BK2011871) and Natural Science Foundation of Jiangsu Academy of Forestry (Y0003). Special thanks are due to Dr. Siming Gan and anonymous reviewers for their valuable comments on the manuscript.

Conflict of interest

The authors declare that they have no conflict of interests.

Data archiving statement

All the 454 reads of S. babylonica and S. suchowensis were submitted to the sequence read archive (SRA) database at NCBI (http://www.ncbi.nlm.nih.gov/sra) with the accession number SRX389383 and SRX388824, respectively.

Author information

Correspondence to Xudong He.

Additional information

Communicated by P. Ingvarsson

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, X., Zheng, J., Zhou, J. et al. Characterization and comparison of EST-SSRs in Salix, Populus, and Eucalyptus . Tree Genetics & Genomes 11, 820 (2015). https://doi.org/10.1007/s11295-014-0820-3

Download citation


  • Microsatellites
  • Salix
  • Populus
  • Eucalyptus