Tree Genetics & Genomes

, 11:818 | Cite as

Quantitative genetic analysis of berry firmness in table grape (Vitis vinifera L.)

  • Iván Carreño
  • José Antonio Cabezas
  • Celia Martínez-Mora
  • Rosa Arroyo-García
  • José Luis Cenis
  • José Miguel Martínez-Zapater
  • Juan Carreño
  • Leonor Ruiz-GarcíaEmail author
Original Paper


Berry texture is a determinant quality trait in the breeding of new table grape varieties. We present the first mapping quantitative trait loci (QTL) results for berry firmness in table grape. Two segregating progenies, Muscat Hamburg × Sugraone (153 offspring) and Ruby Seedless × Moscatuel (78 offspring), were evaluated for this trait during two and four productive seasons, respectively. Firmness was scored at harvest as the force (newtons) required for a 20 % deformation of the berries. Parental and consensus genetic maps were built for each population. QTL analyses revealed a complex genetic control of firmness. Significant QTLs at genome-wide level were detected in seven genomic regions on linkage groups (LGs) 1, 4, 5, 9, 10, 13, and 18, individually explaining up to 19.8 % of the total phenotypic variance. The combined effect of all the QTLs detected in one season explained up to 44.5 % of the total phenotypic variance. Some annotated genes colocating with the LOD-1 support intervals of those QTLs are proposed as putative candidate genes that might be responsible for the QTLs that affect berry firmness.


Phenotypic segregation Genetic map QTL mapping Candidate genes Breeding 



This study was financially supported by the GRAPEGEN project from Genoma España as well as the BIO-AGR06/03-0007-Biocarm project from the Consejería de Educación y Cultura de la Región de Murcia. The authors wish to thank to Dr. P. Hellín for her help with Texture Analyzer TA.XT2, and M. Alcaraz, J.P. Rosa-Fernández, D. Vicente Cervantes, and A. Fuentes for their technical assistance. We are also grateful to the Genómica-Campus Moncloa del Parque Científico de Madrid for SSRs genotyping and the Centro Nacional de Genotipado for SNPlex genotyping. L. Ruiz-García worked previously with an Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria contract cofunded by the European Social Fund, and currently works with a contract 80 % cofunded by the European Regional Development Fund. I. Carreño was a pre-doctoral fellow of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. J.A. Cabezas was partially funded by a research contract from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Autonomous Communities, Spanish Government. The authors declare that that the experiments comply with the current laws of Spain.

Data Archiving Statement

We have submitted the mapping data set to database.

Supplementary material

11295_2014_818_MOESM1_ESM.doc (372 kb)
Supplementary Material S1 (DOC 372 kb)
11295_2014_818_MOESM2_ESM.doc (36 kb)
Supplementary Material S2 (DOC 35 kb)
11295_2014_818_MOESM3_ESM.doc (435 kb)
Supplementary Material S3 (DOC 435 kb)
11295_2014_818_MOESM4_ESM.doc (392 kb)
Supplementary Material S4 (DOC 392 kb)
11295_2014_818_MOESM5_ESM.doc (88 kb)
Supplementary Material S5 (DOC 88 kb)
11295_2014_818_MOESM6_ESM.doc (34 kb)
Supplementary Material S6 (DOC 33 kb)


  1. Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027CrossRefPubMedGoogle Scholar
  2. Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L and Vitis sp). Mol Breed 19:103–111CrossRefGoogle Scholar
  3. Barba P, Cadle-Davidson L, Harriman J, Glaubitz J, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84CrossRefPubMedGoogle Scholar
  4. Barnavon L, Doco T, Terrier N, Ageorgees A, Romieu C, Pellerin P (2001) Involvement of pectin methyl-esterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins. Phytochemistry 58:693–701CrossRefPubMedGoogle Scholar
  5. Battilana J, Costantini L, Emmanueli F, Sevini F, Segala F, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-D-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 108:653–669CrossRefGoogle Scholar
  6. Brummel DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340CrossRefGoogle Scholar
  7. Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585CrossRefPubMedGoogle Scholar
  8. Cabezas JA, Ibáñez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carreño I, Jermakow AM, Carreño J, Ruiz-García L, Thomas MR, Martínez-Zapater JM (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cain DW, Emershad RL, Tarailo RE (1983) In ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.). Vitis 22:9–14Google Scholar
  10. Carreño J, Martínez A, García E, Ortiz M, Pinilla MF, García MG (1997) Cultivo de embriones de vid (Vitis vinifera L.) para la obtención de nuevas variedades de uva de mesa sin semillas. Vitic Enol Prof 52:37–45Google Scholar
  11. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30CrossRefPubMedGoogle Scholar
  12. Cefola M, Pace B, Buttaro D, Santamaria P, Serio F (2011) Postharvest evaluation of soilless-grown table grape during storage in modified atmosphere. J Sci Food Agric 91:2153–2159PubMedGoogle Scholar
  13. Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182PubMedCentralPubMedGoogle Scholar
  14. Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, King GJ, Charles Baxter C, Seymour GB (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159:1644–1657CrossRefPubMedCentralPubMedGoogle Scholar
  15. Cliff MA, Dever MC, Reynolds AG (1996) Descriptive profiling of new and commercial British Columbia table grape cultivars. Am J Enol Vitic 47:301–308Google Scholar
  16. Correa J, Mamani M, Muñoz-Espinoza C, Laborie D, Muñoz C, Pinto M, Hinrichsen P (2014) Heritability and identification of QTLs and underlying candidate genes associated with the architecture of the grapevine cluster (Vitis vinifera L.). Theor Appl Genet 127:1143–1162CrossRefPubMedGoogle Scholar
  17. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev 6:850–861CrossRefGoogle Scholar
  18. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38CrossRefPubMedCentralPubMedGoogle Scholar
  19. Costantini L, Moreira FM, Zyprian E, Martínez-Zapater JM, Grando MS (2009) Molecular maps, QTL mapping and association mapping in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology, 2nd edn. Springer, New York, p 535–563Google Scholar
  20. Coupel-Ledru A, Lebon E, Christophe A, Doligez A, Cabrera-Bosquet LL, Péchier P, Hamard P, This P, Simonneau T (2014) Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot. doi: 10.1093/jxb/eru228 PubMedCentralPubMedGoogle Scholar
  21. Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429–471CrossRefPubMedCentralPubMedGoogle Scholar
  22. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795CrossRefPubMedGoogle Scholar
  23. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382CrossRefPubMedGoogle Scholar
  24. Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grape. Tree Genet Genomes 6:413–422CrossRefGoogle Scholar
  25. Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, François P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Péros JP, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L). BMC Plant Biol 13:217CrossRefPubMedCentralPubMedGoogle Scholar
  26. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucl Ac Res 19:4008CrossRefGoogle Scholar
  27. Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2012) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124:623–635CrossRefPubMedGoogle Scholar
  28. Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martínez-Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149Google Scholar
  29. Fouquet R, Léon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27:1541–1550CrossRefPubMedGoogle Scholar
  30. Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ait). Theor Appl Genet 88:289–292PubMedGoogle Scholar
  31. Glissant D, Dédaldéchamp F, Delrot S (2008) Transcriptomic analysis of grape berry softening during ripening. J Int Sci Vigne Vin 42:1–13Google Scholar
  32. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedCentralPubMedGoogle Scholar
  33. Grotte M, Cadot Y, Poussier A, Loonis D, Pietri E, Duprat F, Barbeau G (2001) Determination of the maturity status of grape berry (Vitis vinifera) from physical measurement: methodology. J Int Sci Vigne Vin 35:87–98Google Scholar
  34. Grzeskowiak L, Costantini L, Lorenzi S, Grando MS (2013) Signatures of selection in the grapevine flowering gene network. In: 57th Annual congress Società Italiana di Genetica Agraria, Foggia. ISBN: 978-88-904570-3-6.
  35. Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N et al (2011) Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 11:165CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328CrossRefPubMedGoogle Scholar
  37. Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol 12:30–59CrossRefPubMedCentralPubMedGoogle Scholar
  38. Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958PubMedCentralPubMedGoogle Scholar
  39. Ishimaru M, Kobayashi S (2002) Expression of a xylogucan endo-transglycosylase gene is closely related to grape berry softening. Plant Sci 162:621–628CrossRefGoogle Scholar
  40. Ishimaru M, Smith DL, Gross K, Kobayashi S (2007) Expression of three expansin genes during development and maturation of Kyoho grape berries. J Plant Phys 164:1675–1682CrossRefGoogle Scholar
  41. Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefPubMedGoogle Scholar
  42. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedCentralPubMedGoogle Scholar
  43. Karaagac E, Vargas A, De Andrés MT, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015CrossRefGoogle Scholar
  44. Kosambi DD (1944) The estimation of distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  45. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedCentralPubMedGoogle Scholar
  46. Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Human Genet 34:842–845Google Scholar
  47. Lehmann EL (1975) Nonparametrics: statistical methods based on ranks. Holden-Day, San FranciscoGoogle Scholar
  48. Le Moigne M, Maury C, Bertrand D, Jourjon F (2008) Sensory and instrumental characterization of Cabernet Franc grapes according to ripening stages and growing location. Food Qual Pref 19:220–231CrossRefGoogle Scholar
  49. Letaief H, Rolle L, Gerbi V (2008) Mechanical behavior of winegrapes under compression tests. Am J Enol Vitic 59:323–329Google Scholar
  50. Lijavetzky D, Cabezas JA, Ibáñez A, Rodríguez V, Martínez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424CrossRefPubMedCentralPubMedGoogle Scholar
  51. Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellín P, Oliveros JC, Martínez-Zapater JM (2012) Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS ONE 7:e39547CrossRefPubMedCentralPubMedGoogle Scholar
  52. Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh). BMC Plant Biol 13:37CrossRefPubMedCentralPubMedGoogle Scholar
  53. Lowe KM, Riaz S, Walker MA (2009) Variation in recombination rates across Vitis species. Tree Genet Genomes 5:71–80CrossRefGoogle Scholar
  54. Manso A (2009) Estudio del desarrollo del color, textura y aroma en uva de mesa (Vitis vinifera L.). PhD Thesis. University of Murcia, SpainGoogle Scholar
  55. Martínez-Romero D, Guillén F, Castillo S, Valero D, Serrano M (2003) Modified atmosphere packaging maintains quality of table grapes. J Food Sci 68:1838–1843CrossRefGoogle Scholar
  56. Maury C, Madieta E, Le Moigne M, Mehinagic E, Siret R, Jourjon F (2009) Development of a mechanical texture test to evaluate the ripening process of Cabernet Franc grapes. J Text Stud 40:511–535CrossRefGoogle Scholar
  57. Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless table grape progeny. Am J Enol Vitic 58:499–507Google Scholar
  58. Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono MA, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57CrossRefPubMedCentralPubMedGoogle Scholar
  59. Nelson CD, Kubisiak TL, Stine M, Nance WL (1994) A genetic linkage map of longleaf pine (Pinus palustris Mill) based on random amplified polymorphic DNAs. J Hered 85:433–439Google Scholar
  60. Nunan K, Sims IM, Bacic A, Robinson S, Fincher G (1998) Changes in cell wall composition during ripening of grape berries. Plant Phys 118:783–792CrossRefGoogle Scholar
  61. Nunan KJ, Davies C, Robinson SP, Fincher GB (2001) Expression patterns of cell wall-modifying enzymes during grape berry development. Planta 214:257–264CrossRefPubMedGoogle Scholar
  62. OIV (2009) OIV descriptor list for grape varieties and Vitis species, 2nd edn. Organisation Internationale de la Vigne et du Vin, ParisGoogle Scholar
  63. Pilati S, Perazzolli M, Malossini A, Cestaro A, Demattè L, Fontana P, Dal Ri A, Viola A, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics 8:428CrossRefPubMedCentralPubMedGoogle Scholar
  64. Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framework linkage map of Vitis vinifera L. Theor Appl Genet 108:864–872CrossRefPubMedGoogle Scholar
  65. Riaz S, Tensher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073CrossRefPubMedCentralPubMedGoogle Scholar
  66. Rolle L, Giacosa S, Gerbi V, Novello V (2011) Comparative study of texture properties, color characteristics, and chemical composition of ten white table-grape varieties. Am J Enol Vitic 62:49–56CrossRefGoogle Scholar
  67. Rolle L, Siret R, Río Segade S, Maury C, Gerbi V, Jourjon F (2012) Instrumental texture analysis parameters as markers of table-grape and winegrape quality: a review. Am J Enol Vitic 63:1CrossRefGoogle Scholar
  68. Sato A, Yamada M (2003) Berry texture of table, wine, and dual purpose grape cultivars quantified. HortSci 38:578–581Google Scholar
  69. Sato A, Yamane H, Hirakawa N, Otobe K, Yamada M (1997) Varietal differences in the texture of grape berries measured by penetration tests. Vitis 36:7–10Google Scholar
  70. Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P (2008) Cellular expansion and gene expression in the developing grape (Vitis vinifera L). Protoplasma 232:255–265CrossRefPubMedGoogle Scholar
  71. Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2011) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176CrossRefPubMedGoogle Scholar
  72. Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dédaldéchamp F, Romieu C, Delrot S, Hamdi S (2005) Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L) development. Planta 222:832–847CrossRefPubMedGoogle Scholar
  73. Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC, Lambert SM, Wu PP, Wang Y, Spoonde AY, Koehler RT, Peyret N, Chen C, Broomer AJ, Ridzon DA, Zhou H, Hoo BS, Hayashibara KC, Leong LN, Ma CN, Rosenblum BB, Day JP, Ziegle JS, De La Vega FM, Rhodes MD, Hennessy KM, Wenz HM (2005) The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16:398–406PubMedCentralPubMedGoogle Scholar
  74. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International Wageningen, The NetherlandsGoogle Scholar
  75. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL® 40, software for the calculation of QTL positions on genetic maps. Plant Research International Wageningen, the NetherlandsGoogle Scholar
  76. Vargas A, Pérez J, Zoffoli JP, Pérez A (2001) Comparación de variables de textura en la medición de firmeza de bayas de uva Thompson Seedless. Cien Inv Agr 28:37–42Google Scholar
  77. Vargas AM, Le Cunff L, This P, Ibáñez J, De Andrés MT (2013a) VvGAI1 polymorphisms associate with variation for berry traits in grapevine. Euphytica 191:85–98CrossRefGoogle Scholar
  78. Vargas AM, Fajardo C, Borrego J, De Andrés MT, Ibáñez J (2013b) Polymorphisms in  VvPel associate with variation in berry texture and bunch size in the grapevine. Aust J Grape Wine Res 19:193–207Google Scholar
  79. Velasco R et al (2007) High quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326CrossRefPubMedCentralPubMedGoogle Scholar
  80. Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  81. Yakushiji H, Sakurai N, Morinaga K (2001) Changes in cell-wall polysaccharides from the mesocarp of grape berries during veraison. Phys Plant 111:188–195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Iván Carreño
    • 1
  • José Antonio Cabezas
    • 2
  • Celia Martínez-Mora
    • 1
  • Rosa Arroyo-García
    • 3
  • José Luis Cenis
    • 1
  • José Miguel Martínez-Zapater
    • 4
  • Juan Carreño
    • 1
  • Leonor Ruiz-García
    • 1
    Email author
  1. 1.Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA)La AlbercaSpain
  2. 2.Centro de Investigaciones Forestales (INIA-CIFOR)MadridSpain
  3. 3.Centro de Biotecnología y Genómica de Plantas (CBGP, INIA-UPM), Campus de MontegancedoPozuelo de AlarcónSpain
  4. 4.Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja)Complejo Científico TecnológicoLogroñoSpain

Personalised recommendations