Tree Genetics & Genomes

, 11:801 | Cite as

FDR and SDR processes in meiosis and diploid gamete formation in poplars (Populus L.) detected by centromere-associated microsatellite markers

  • Heike Liesebach
  • Kristina Ulrich
  • Dietrich Ewald
Original Paper


Sexual polyploidisation is one of the appropriate approaches in poplar breeding. Controlled pollinations were carried out with spontaneously formed, as well as induced, 2n gametes. Among the offspring individuals, 36 triploid plants and 1 tetraploid individual were detected by flow cytometry. The parental clones and all polyploid offspring individuals were genotyped by 18 nuclear microsatellite markers. The allelic configurations, especially tri-allelic patterns, and dosage effects were used to recognise diploid contributions of the male or female gamete. Three out of 18 markers localised near the centromeres of linkage groups I, X and XV. They are assumed to be unaffected by crossing over events and, therefore, able to ascertain the mechanism of first division restitution (FDR) or second division restitution (SDR) to generate diploid gametes. The applied three unlinked centromere-associated microsatellite markers allow a very effective determination of FDR resp. SDR processes. Altogether, 21 diploid pollen (10 FDR and 11 SDR) and 13 diploid ovules (1 FDR and 12 SDR) as well as 2 cases of postmeiotic reconstitution were determined with no inconsistency for the three markers. A female hybrid aspen clone (Populus tremula × Populus tremuloides) was assured to be able to frequently spontaneously form diploid ovules by the SDR mechanism. The transferred average heterozygosity in FDR gametes was assessed to be remarkably higher than that in SDR gametes. However, a selective inducement to favour FDR gametes seems not to be feasible with the current thermo-treatment techniques.


Populus sp. Triploid Unreduced gametes Microsatellite markers Heterozygosity Poplar breeding 



We thank Prof. Yang Minsheng (Agricultural University of Hebei, China) for providing Populus simonii pollen, Mr. Volker Schneck (Thünen Institute of Forest Genetics Waldsieversdorf) for providing some spontaneously generated triploids poplar plants, Ms. Elke Ewald for laboratory assistance in genotyping and Ms. Dina Führmann for language editing. We also thank the anonymous reviewers for their helpful comments. This work was funded by the German Agency Renewable Resources (Fachagentur Nachwachsende Rohstoffe e.V. (FNR)).

Data archiving statement

A spreadsheet file in the form of marker/genotype data is provided as a supplementary material.

Supplementary material

11295_2014_801_MOESM1_ESM.xlsx (12 kb)
ESM 1 (XLSX 12 kb)
11295_2014_801_MOESM2_ESM.xlsx (40 kb)
ESM 2 (XLSX 40 kb)


  1. Bradshaw HD, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet 86:301–307. doi: 10.1007/bf00222092 PubMedGoogle Scholar
  2. Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668. doi: 10.1093/jxb/erq371 CrossRefPubMedGoogle Scholar
  3. Cai X, Xu SS (2007) Meiosis-driven genome variation in plants. Curr Genom 8:151–161CrossRefGoogle Scholar
  4. Cuenca J, Froelicher Y, Aleza P, Juarez J, Navarro L, Ollitrault P (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity 107:462–470. doi: 10.1038/hdy.2011.33 CrossRefPubMedCentralPubMedGoogle Scholar
  5. De Storme N, Geelen D (2013) Sexual polyploidization in plants—cytological mechanisms and molecular regulation. New Phytol 198:670–684. doi: 10.1111/nph.12184 CrossRefPubMedCentralPubMedGoogle Scholar
  6. De Storme N, Copenhaver GP, Geelen D (2012) Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol 160:1808–1826. doi: 10.1104/pp. 112.208611 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Dewitte A, Van Laere K, Van Huylenbroeck J (2012) Use of 2n gametes in plant breeding. In: Abdurakhmonov IY (ed) Plant breeding. Agricultural and Biological Sciences. pp 59–86. doi: 10.5772/29827Google Scholar
  8. Dong C-B, Suo Y-J, Kang X-Y (2014) Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies. Can J Forest Res:692–699 doi: 10.1139/cjfr-2013-0360Google Scholar
  9. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256. doi: 10.1007/BF00220937 CrossRefPubMedGoogle Scholar
  10. Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting—peak ratios) method. Theor Appl Genet 109:402–408. doi: 10.1007/s00122-004-1645-5 CrossRefPubMedGoogle Scholar
  11. Ewald D, Ulrich K (2012) In vitro pollination in poplar of section Populus. Plant Cell Tiss Organ Cult 111:255–258. doi: 10.1007/s11240-012-0189-7 CrossRefGoogle Scholar
  12. Ewald D, Ulrich K, Naujoks G, Schröder MB (2009) Induction of tetraploid poplar and black locust plants using colchicine: chloroplast number as an early marker for selecting polyploids in vitro. Plant Cell Tiss Organ Cult 99:353–357. doi: 10.1007/s11240-009-9601-3 CrossRefGoogle Scholar
  13. Ewald D, Ulrich K, Liesebach H (2012) Erzeugung triploider Individuen und intersektioneller Hybriden bei verschiedenen Pappelarten. In: Züchtung und Ertragsleistung schnellwachsender Baumarten im Kurzumtrieb - Erkenntnisse aus drei Jahren FastWOOD, ProLoc und Weidenzüchtung, Hann. Münden. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, pp 183–193Google Scholar
  14. Ferrante S, Lucretti S, Reale S, Patrizio A, Abbate L, Tusa N, Scarano M-T (2010) Assessment of the origin of new citrus tetraploid hybrids (2n =4x) by means of SSR markers and PCR based dosage effects. Euphytica 173:223–233. doi: 10.1007/s10681-009-0093-3 CrossRefGoogle Scholar
  15. Jackson N, Sanchez-Moran E, Buckling E, Armstrong SJ, Jones GH, Franklin FCH (2006) Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis. EMBO J 25:1315–1323. doi: 10.1038/sj.emboj.7600992 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Johnsson H (1945) The triploid progeny of the cross diploid x tetraploid Populus tremula. Hereditas 31:411–440. doi: 10.1111/j.1601-5223.1945.tb02761.x CrossRefPubMedGoogle Scholar
  17. Johnsson H, Eklundh C (1940) Colchicine treatment as a method in breeding hardwood species. Svensk Papperstidning 43:337–373Google Scholar
  18. Kang X-Y, Zhu Z-T, Zhang Z-Y (2000) Breeding of triploids by the reciprocal crossing of Populus alba × P. glandulosa and P. tomentosa × P. bolleana. J Beijing For Univ 22:8–11Google Scholar
  19. Kohl KP, Sekelsky J (2013) Meiotic and mitotic recombination in meiosis. Genetics 194:327–334. doi: 10.1534/genetics.113.150581 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Li YH, Kang X-Y, Wang SD, Zhang ZH, Chen HW (2008) Triploid induction in Populus alba × P. glandulosa by chromosome doubling of female gametes. Silv Genet 57:37–40Google Scholar
  21. Liesebach H, Schneck V, Ewald E (2010) Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids. Tree Genet Genomes 6:259–269. doi: 10.1007/s11295-009-0246-5 CrossRefGoogle Scholar
  22. Liesebach H, Naujoks G, Ewald D (2011) Successful hybridisation of normally incompatible hybrid aspen (Populus tremula × P. tremuloides) and eastern cottonwood (P. deltoides). Sex Plant Reprod 24:189–198. doi: 10.1007/s00497-010-0156-6 CrossRefPubMedGoogle Scholar
  23. Liesebach M, Schneck V, Wolf H (2012) Züchtung von Aspen für den Kurzumtrieb (Aspen improvement for short rotation coppice). In: Züchtung und Ertragsleistung schnellwachsender Baumarten im Kurzumtrieb - Erkenntnisse aus drei Jahren FastWOOD, ProLoc und Weidenzüchtung, Hann. Münden. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, pp 73–90Google Scholar
  24. Lu M, Zhang P, Kang X (2013) Induction of 2n female gametes in Populus adenopoda Maxim by high temperature exposure during female gametophyte development. Breed Sci 63:96–103. doi: 10.1270/jsbbs.63.96 CrossRefPubMedCentralPubMedGoogle Scholar
  25. Lu M, Zhang P, Wang J, Kang X, Wu J, Wang X, Chen Y (2014) Induction of tetraploidy using high temperature exposure during the first zygote division in Populus adenopoda Maxim. Plant Growth Regul 72:279–287. doi: 10.1007/s10725-013-9859-7 CrossRefGoogle Scholar
  26. Mashkina OS, Burdaeva IM, Belozerova MM, V’Yunova LN (1989) A method of inducing diploid pollen in woody species. Lesovedenie 1:19–25Google Scholar
  27. Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120:281–290. doi: 10.1159/000121077 CrossRefPubMedGoogle Scholar
  28. Müntzing A (1936) The evolutionary significance of autopolyploidy. Hereditas 21:363–378. doi: 10.1111/j.1601-5223.1936.tb03204.x CrossRefGoogle Scholar
  29. Nemorin A, David J, Maledon E, Nudol E, Dalon J, Arnau G (2013) Microsatellite and flow cytometry analysis to help understand the origin of Dioscorea alata polyploids. Ann Bot 112:811–819. doi: 10.1093/aob/mct145 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Peloquin SJ, Boiteux LS, Simon PW, Jansky SH (2008) A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered 99:177–181. doi: 10.1093/jhered/esm110 CrossRefPubMedGoogle Scholar
  31. Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133:3–8. doi: 10.1023/A:1025600824483 CrossRefGoogle Scholar
  32. Seitz FW (1954) The occurrence of triploids after self-pollination of anomalous androgynous flowers of a grey poplar. Z Forstgenet 3:1–6Google Scholar
  33. Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. doi: 10.1126/science.1128691 CrossRefPubMedGoogle Scholar
  34. Ulrich K, Ewald D (2014) Breeding triploid aspen and poplar clones for biomass production. Silv Genet 63:47–58Google Scholar
  35. Vining K et al (2012) Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression. BMC Genomics 13:27. doi: 10.1186/1471-2164-13-27 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Wang J, Kang X-Y, Li D-L, Chen H, Zhang P (2010) Induction of diploid eggs with colchicine during embryo sac development in Populus. Silv Genet 59:40–48Google Scholar
  37. Wang J, Kang X-Y, Li D-L (2012) High temperature-induced triploid production during embryo sac development in Populus. Silv Genet 61:85–93Google Scholar
  38. Xi XJ, Jiang XB, Li D, Guo LQ, Zhang JF, Wei ZZ, Li BL (2011) Induction of 2n pollen by colchicine in Populus × popularis and its triploids breeding. Silv Genet 60:155–160Google Scholar
  39. Yang S, Lu L, Ni Y (2006) Cloned poplar as a new fibre resource for the Chinese pulp and paper industry. Pulp Pap Can 107:34–37Google Scholar
  40. Yao H, Dogra Gray A, Auger DL, Birchler JA (2013) Genomic dosage effects on heterosis in triploid maize. PNAS 110:2665–2669. doi: 10.1073/pnas.1221966110 CrossRefPubMedCentralPubMedGoogle Scholar
  41. Yin T, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463. doi: 10.1007/s00122-004-1653-5 CrossRefPubMedGoogle Scholar
  42. Younis A, Hwang Y-J, Lim K-B (2014) Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep 33:215–223. doi: 10.1007/s00299-013-1534-y CrossRefPubMedGoogle Scholar
  43. Zhang Z, Kang X-Y (2010) Cytological characteristics of numerically unreduced pollen production in Populus tomentosa Carr. Euphytica 173:151–159. doi: 10.1007/s10681-009-0051-0 CrossRefGoogle Scholar
  44. Zhang ZY, Li FL, Zhu ZT (1992) Chromosome doubling and triploid breeding of Populus tomentosa Carr. and its hybrid. J Beijing For Univ 14(Suppl):52–58Google Scholar
  45. Zhang J-F, Wei Z-Z, Li D, Li B (2009) Using SSR markers to study the mechanism of 2n pollen formation in Populus × euramericana (Dode) Guinier and P. × popularis. Ann For Sci 66:506. doi: 10.1051/forest/2009032 CrossRefGoogle Scholar
  46. Zhu Z, Kang X, Zhang Z (1998) Studies on selection of natural triploids of Populus tomentosa. Sci Silvae Sin 34:22–32Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heike Liesebach
    • 1
  • Kristina Ulrich
    • 2
  • Dietrich Ewald
    • 2
  1. 1.Thünen Institute of Forest GeneticsGerman Federal Research Institute for Rural Areas, Forestry and FisheriesGrosshansdorfGermany
  2. 2.Thünen Institute of Forest GeneticsGerman Federal Research Institute for Rural Areas, Forestry and FisheriesWaldsieversdorfGermany

Personalised recommendations