Advertisement

Tree Genetics & Genomes

, Volume 10, Issue 6, pp 1645–1660 | Cite as

Identifying signatures of natural selection in cork oak (Quercus suber L.) genes through SNP analysis

  • Inês S. Modesto
  • Célia Miguel
  • Francisco Pina-Martins
  • Maria Glushkova
  • Manuela Veloso
  • Octávio S. Paulo
  • Dora Batista
Original Paper

Abstract

Cork oak (Quercus suber L.) is an evergreen tree species endemic to the western Mediterranean Basin with a major economical, social and ecological relevance, associated with cork extraction and exploitation. In the last years, cork oak stands have been facing a significant decline, which may be aggravated by the climate changes that are predicted to occur within cork oak distribution range during this century. Under this scenario, the assessment of adaptive genetic variation is essential to understand how cork oak may cope with these threats and to delineate strategies for the management of its genetic resources. In this study, six candidate genes possibly significant for environmental adaptation were analysed in cork oak populations from its entire distribution range. Signatures of natural selection were investigated using population genetic statistics and environmental association tests under alternative scenarios of population genetic structure. Signals of balancing selection were detected in the putative non-expressor of pathogenesis-related gene 1 (NPR1), involved in plant defence response against pathogens, in auxin response factor 16 (ARF16), a gene implicated in root development, in RAN3, also involved in developmental processes, and in glutamine synthetase nodule isozyme (GS), involved in nitrogen fixation. Furthermore, for ARF16, a class I heat shock protein (sHSP) and GS, associations were found between SNP allele and haplotype frequencies and several spatial and climatic variables, suggesting that these genes may have a role on cork oak local adaptation. In this study, the first steps were taken into gathering information on cork oak adaptation to environmental conditions.

Keywords

Adaptive genetic variation Balancing selection Candidate gene Environmental association Western Mediterranean 

Notes

Acknowledgments

We thank José Conde (CISE - Centro de Interpretação da Serra da Estrela, Seia, Portugal) for the indispensable support in the exhaustive survey and sample collection at Serra da Estrela, and Maria Helena Almeida (Instituto Superior de Agronomia, UTL) for sample access and advice regarding the international provenance trial (FAIR I CT 95 0202) established at Monte Fava, Alentejo, Portugal. This work was funded by Portuguese funds through FCT - Fundação para a Ciência e Tecnologia (projects PTDC/AGR-GPL/104966/2008 and SOBREIRO/0036/2009). We thank the anonymous reviewers for their constructive comments and suggestions which helped us to improve the manuscript.

Data archiving statement

Sequence data has been submitted to GenBank (National Center for Biotechnology Information) and can be accessed through the accession numbers KF988869-KF989346. A complete list of accession numbers is provided in Online Resource 2.

Supplementary material

11295_2014_786_MOESM1_ESM.pdf (39 kb)
Online Resource 1 (PDF 38 kb)
11295_2014_786_MOESM2_ESM.pdf (159 kb)
Online Resource 2 (PDF 159 kb)
11295_2014_786_MOESM3_ESM.pdf (10 kb)
Online Resource 3 (PDF 10 kb)
11295_2014_786_MOESM4_ESM.pdf (155 kb)
Online Resource 4 (PDF 154 kb)
11295_2014_786_MOESM5_ESM.pdf (365 kb)
Online Resource 5 (PDF 364 kb)
11295_2014_786_MOESM6_ESM.pdf (85 kb)
Online Resource 6 (PDF 84 kb)

References

  1. Alberto FJ, Derory J, Boury C, Frigerio JM, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195(2):495–512PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alexandrov AH, Genov K, Popov E (2001) Country reports: Bulgaria. In: Borelli S, Vare MC (eds) Mediterranean oaks network, Report of the first meeting, 12–14 October 2000, Antalya, Turkey. IPGRI, Rome, ItalyGoogle Scholar
  3. Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199CrossRefGoogle Scholar
  4. Aranda I, Castro L, Alia R, Pardos JA, Gil L (2005) Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiol 25(8):1085–1090PubMedCrossRefGoogle Scholar
  5. Aranda I, Pardos M, Puertolas J, Jimenez MD, Pardos JA (2007) Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiol 27(5):671–677PubMedCrossRefGoogle Scholar
  6. Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: Differences between annual plants and tree species. Genetics 154(3):1309–1321PubMedPubMedCentralGoogle Scholar
  7. Bernard SM, Habash DZ (2009) The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol 182(3):608–620PubMedCrossRefGoogle Scholar
  8. Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22(8):437–446PubMedCrossRefGoogle Scholar
  9. Bondino HG, Valle EM, ten Have A (2012) Evolution and functional diversification of the small heat shock protein/alpha-crystallin family in higher plants. Planta 235(6):1299–1313PubMedCrossRefGoogle Scholar
  10. Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Ann Sci For 53(2–3):347–358CrossRefGoogle Scholar
  11. Cabral MT, Ferreira MC (1999) Pragas dos Montados. Estação Florestal Nacional, LisboaGoogle Scholar
  12. Caldwell KS, Michelmore RW (2009) Arabidopsis thaliana genes encoding defense signaling and recognition proteins exhibit contrasting evolutionary dynamics. Genetics 181(2):671–684PubMedCrossRefPubMedCentralGoogle Scholar
  13. Coca MA, Almoguera C, Jordano J (1994) Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination-localization and possible functional implications. Plant Mol Biol 25(3):479–492PubMedCrossRefGoogle Scholar
  14. Costa J, Miguel C, Almeida H, Oliveira MM, Matos JA, Simões F, Veloso M, Pinto Ricardo C, Paulo OS, Batista D (2011) Genetic divergence in Cork Oak based on cpDNA sequence data. IUFRO Tree Biotechnology Conference 2011: from genomes to integration and delivery. BMC Proc 5:(Suppl 7), 13Google Scholar
  15. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292(5517):673–679PubMedCrossRefGoogle Scholar
  16. Derory J, Leger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glossl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol 170(4):723–738PubMedCrossRefGoogle Scholar
  17. Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A, Casasoli M, Chancerel E, Bodenes C, Alberto F, Kremer A (2010) Contrasting relations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 105(4):401–411PubMedCrossRefGoogle Scholar
  18. Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci U S A 107(26):12046–12051PubMedCrossRefPubMedCentralGoogle Scholar
  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567PubMedCrossRefGoogle Scholar
  20. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298PubMedCrossRefGoogle Scholar
  21. Flot JF (2007) CHAMPURU 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7(6):974–977CrossRefGoogle Scholar
  22. Flot JF, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6(3):627–630CrossRefGoogle Scholar
  23. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915–925PubMedPubMedCentralGoogle Scholar
  24. Gandour M, Khouja ML, Toumi L, Triki S (2007) Morphological evaluation of cork oak (Quercus suber): Mediterranean provenance variability in Tunisia. Ann For Sci 64(5):549–555CrossRefGoogle Scholar
  25. Gil L, Varela MC (2008) Cork oak (Quercus suber). In: EUFORGEN (ed) Technical guidelines for genetic conservation and use. IPGRI, RomeGoogle Scholar
  26. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63(2–3):90–104CrossRefGoogle Scholar
  27. Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase ran in Arabidopsis. Plant J 11(1):93–103PubMedCrossRefGoogle Scholar
  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids 41:95–98Google Scholar
  29. Higgins PAT, Harte J (2006) Biophysical and biogeochemical responses to climate change depend on dispersal and migration. Bioscience 56:407–417Google Scholar
  30. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1 DIVA-GIS. Plant Genet Resour Newslett 127:15–19Google Scholar
  31. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978CrossRefGoogle Scholar
  32. Homolka A, Schueler S, Burg K, Fluch S, Kremer A (2013) Insights into drought adaptation of two European oak species revealed by nucleotide diversity of candidate genes. Tree Genet Genomes 9(5):1179–1192CrossRefGoogle Scholar
  33. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, Muliyati NW, Platt A, Sperone FG, Vilhjalmsson BJ, Nordborg M, Borevitz JO, Bergelson J (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44(2):212–216PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hungria M, Kaschuk G (2013) Regulation of N2 fixation and NO3−/NH4+ assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environ Exp Bot 98:32–39Google Scholar
  35. IPCC (2007) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. IPCC Secretariat, GenevaGoogle Scholar
  36. Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16(18):3955–3969PubMedCrossRefGoogle Scholar
  37. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452Google Scholar
  38. Liu ZY, Jia LG, Wang H, He YK (2011) HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. J Exp Bot 62(12):4367–4381PubMedCrossRefPubMedCentralGoogle Scholar
  39. Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG (2007) The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Mol Ecol 16(24):5259–5266PubMedCrossRefGoogle Scholar
  40. Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15):2471–2472PubMedCrossRefGoogle Scholar
  41. Meier I, Brkljacic J (2010) The Arabidopsis nuclear pore and nuclear envelope. Arabidopsis Book//Am Soc Plant Biol 8:139Google Scholar
  42. Merkle T (2011) Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Rep 30:153–176PubMedCrossRefPubMedCentralGoogle Scholar
  43. Moreira AC, Martins JMS (2005) Influence of site factors on the impact of Phytophthora cinnamomi in cork oak stands in Portugal. For Pathol 35(3):145–162CrossRefGoogle Scholar
  44. Murphy EL (1985) Bergmann’s rule, seasonality and geographic variation in body size of house sparrows. Evolution 39:1327–1334CrossRefGoogle Scholar
  45. Niderman T, Genetet I, Bruyere T, Gees R, Stintzi A, Legrand M, Fritig B, Mosinger E (1995) Pathogenesis-related PR-1 proteins are antifungal - Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobaco with inhibitory activity against Phytophthora infestans. Plant Physiol 108(1):17–27PubMedCrossRefPubMedCentralGoogle Scholar
  46. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218PubMedCrossRefGoogle Scholar
  47. Nunes A, Almeida M, Monteiro M, Patricio M (2008) Reslutados preliminares em ensaios genéticos de sobreiro. FPFP - Federação dos Produtores Florestais de Portugal, LisboaGoogle Scholar
  48. Otieno DO, Kurz-Besson C, Liu J, Schmidt MWT, Do RVL, David TS, Siegwolf R, Pereira JS, Tenhunen JD (2006) Seasonal variations in soil and plant water status in a Quercus suber L. Stand: roots as determinants of tree productivity and survival in the Mediterranean-type ecosystem. Plant Soil 283(1–2):119–135CrossRefGoogle Scholar
  49. Pausas JG, Pereira JS, Aronson J (2009) The tree. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge. Island Press, Washington DC, pp 11–21Google Scholar
  50. Pereira-Leal JB, Abreu IA, Alabaça CS, Almeida MH, Almeida P, Almeida T, Amorim MI, Araújo S, Azevedo H, Badia A, Batista D, Bohn A, Capote T, Carrasquinho I, Chaves I et al (2014) A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics (Accepted)Google Scholar
  51. Pieterse CM, Van Loon L (2004) NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7(4):456–464PubMedCrossRefGoogle Scholar
  52. Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53(373):1445–1452PubMedCrossRefGoogle Scholar
  53. Pulido FJ, Diaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12(1):92–102CrossRefGoogle Scholar
  54. Quang ND, Ikeda S, Harada K (2008) Nucleotide variation in Quercus crispula Blume. Heredity 101(2):166–174PubMedCrossRefGoogle Scholar
  55. Ramirez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2009a) Elucidating the role of genetic drift and natural selection in cork oak differentiation regarding drought tolerance. Mol Ecol 18(18):3803–3815PubMedCrossRefGoogle Scholar
  56. Ramirez-Valiente JA, Valladares F, Gil L, Aranda I (2009b) Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). For Ecol Manag 257(8):1676–1683CrossRefGoogle Scholar
  57. Ramirez-Valiente JA, Lorenzo Z, Soto A, Valladares F, Gil L, Aranda I (2010) Natural selection on cork oak: allele frequency reveals divergent selection in cork oak populations along a temperature cline. Evol Ecol 24(5):1031–1044CrossRefGoogle Scholar
  58. Ramirez-Valiente AJ, Valladares F, Delgado Huertas A, Granados S, Aranda I (2011) Factors affecting cork oak growth under dry conditions: local adaptation and contrasting additive genetic variance within populations. Tree Genet Genomes 7(2):285–295CrossRefGoogle Scholar
  59. Rauscher M, Adam AL, Wirtz S, Guggenheim R, Mendgen K, Deising HB (1999) PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. Plant J 19(6):625–633PubMedCrossRefGoogle Scholar
  60. Renaut S, Nolte AW, Bernatchez L (2010) Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (Coregonus spp. Salmonidae). Mol Ecol 19:115–131PubMedCrossRefGoogle Scholar
  61. Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27(2):329–334PubMedCrossRefGoogle Scholar
  62. Shearer HL, Wang LP, DeLong C, Despres C, Fobert PR (2009) NPR1 enhances the DNA binding activity of the Arabidopsis bZIP transcription factor TGA7. Botany 87(6):561–570CrossRefGoogle Scholar
  63. Simeone MC, Papini A, Vessella F, Bellarosa R, Spada F, Schirone B (2009) Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation. Caryologia 62(3):236–252Google Scholar
  64. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang HF, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Nee) in the face of climate change. Mol Ecol 19(17):3806–3823PubMedCrossRefGoogle Scholar
  65. Soto A, Lorenzo Z, Gil L (2007) Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of Mediterranean open woods. Heredity 99(6):601–607PubMedCrossRefGoogle Scholar
  66. Sousa E, Santos M, Varela M, Henriques J (2007) Perda de vigor dos montados de sobro e azinho: Análise da situação e perspectivas. Documento Sintese. Eds MADRP, DGRF, INRB, LisbonGoogle Scholar
  67. Spiess N, Oufir M, Matusikova I, Stierschneider M, Kopecky D, Homolka A, Burg K, Fluch S, Hausman J-F, Wilhelm E (2012) Ecophysiological and transcriptomic responses of oak (Quercus robur) to long-term drought exposure and rewatering. Environ Exp Bot 77:117–126CrossRefGoogle Scholar
  68. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76(3):449–462PubMedCrossRefPubMedCentralGoogle Scholar
  69. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989PubMedCrossRefPubMedCentralGoogle Scholar
  70. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  71. Teixeira J, Pereira S (2007) High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environ Exp Bot 60:121–126CrossRefGoogle Scholar
  72. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680PubMedCrossRefPubMedCentralGoogle Scholar
  73. Trinajstic I (2005) Hrast plutnjak (Quercus suber L.) u dendroflori Hrvatske. Rad Šumar Inst 40:199–206Google Scholar
  74. Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176(4):749–763PubMedCrossRefGoogle Scholar
  75. Varela MC (2000) Handbook of the EU concerted action on cork oak, FAIR I CT 95 0202. INIA- Estação Florestal Nacional, OeirasGoogle Scholar
  76. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17(7):1636–1647PubMedCrossRefGoogle Scholar
  77. Wang WX, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9(5):244–252PubMedCrossRefGoogle Scholar
  78. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216PubMedCrossRefPubMedCentralGoogle Scholar
  79. Yan SP, Tang ZC, Su W, Sun WN (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244PubMedCrossRefGoogle Scholar
  80. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591PubMedCrossRefGoogle Scholar
  81. Yang ZH, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118PubMedCrossRefGoogle Scholar
  82. Zhai W, Nielsen R, Slatkin M (2009) An investigation of the statistical power of neutrality tests based on comparative and population genetic data. Mol Biol Evol 26(2):273–283PubMedCrossRefPubMedCentralGoogle Scholar
  83. Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF (2000) NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact 13(2):191–202PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Inês S. Modesto
    • 1
  • Célia Miguel
    • 2
    • 3
  • Francisco Pina-Martins
    • 1
    • 4
  • Maria Glushkova
    • 5
  • Manuela Veloso
    • 6
  • Octávio S. Paulo
    • 1
  • Dora Batista
    • 1
    • 7
  1. 1.Centro de Biologia Ambiental (CBA), Computational Biology and Population Genomics Group (CoBiG2)Faculdade de Ciências, Universidade de LisboaLisboaPortugal
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de Lisboa (ITQB-UNL)OeirasPortugal
  3. 3.Instituto de Biologia Experimental e Tecnológica (IBET)OeirasPortugal
  4. 4.Centro de Estudos do Ambiente e do Mar (CESAM) e Departamento de BiologiaUniversidade de AveiroAveiroPortugal
  5. 5.Department of Forest Genetics, Physiology and PlantationsForest Research Institute of B.A.S.SofiaBulgaria
  6. 6.Unidade de Biotecnologia e Recursos GenéticosInstituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV)OeirasPortugal
  7. 7.Centro de Investigação das Ferrugens do Cafeeiro/Instituto de Investigação Científica Tropical (CIFC-Biotrop/IICT)OeirasPortugal

Personalised recommendations