Tree Genetics & Genomes

, Volume 10, Issue 3, pp 721–737 | Cite as

miRNA profiling in leaf and cork tissues of Quercus suber reveals novel miRNAs and tissue-specific expression patterns

  • Inês Chaves
  • Yao-Cheng Lin
  • C. Pinto-Ricardo
  • Yves Van de Peer
  • Célia Miguel
Original Paper


The differentiation of cork (phellem) cells from the phellogen (cork cambium) is a secondary growth process observed in the cork oak tree conferring a unique ability to produce a thick layer of cork. At present, the molecular regulators of phellem differentiation are unknown. The previously documented involvement of microRNAs (miRNAs) in the regulation of developmental processes, including secondary growth, motivated the search for these regulators in cork oak tissues. We performed deep sequencing of the small RNA fraction obtained from cork oak leaves and differentiating phellem. RNA sequences with lengths of 19–25 nt derived from the two libraries were analysed, leading to the identification of 41 families of conserved miRNAs, of which the most abundant were miR167, miR165/166, miR396 and miR159. Thirty novel miRNA candidates were also unveiled, 11 of which were unique to leaves and 13 to phellem. Northern blot detection of a set of conserved and novel miRNAs confirmed their differential expression profile. Prediction and analysis of putative miRNA target genes provided clues regarding processes taking place in leaf and phellem tissues, but further experimental work will be needed for functional characterization. In conclusion, we here provide a first characterization of the miRNA population in a Fagacea species, and the comparative analysis of miRNA expression in leaf and phellem libraries represents an important step to uncovering specific regulatory networks controlling phellem differentiation.


Small RNA miRNA Quercus suber Phellem Tree Secondary growth 



The authors thank Sónia Gonçalves from CEBAL (Beja, Portugal) for providing the tissue samples. This research was supported by Fundação para a Ciência e Tecnologia (FCT), through projects PEst-OE/EQB/LA0004/2011 and PTDC/AGR-GPL/098369/2008, and grant SFRH/BPD/20833/2004 (to I. Chaves).

Data Archiving Statement

The small RNA sequences obtained for leaf and cork are deposited in the NCBI GenBank database under the accession numbers SRR988108 and SRR988109, respectively.

Supplementary material

11295_2014_717_MOESM1_ESM.pdf (105 kb)
SM1 Electropherogram of HMW RNA and LMW RNA enriched fractions from Q. suber cork tissues (PDF 104 kb)
11295_2014_717_MOESM2_ESM.xlsx (83 kb)
SM2 miRCat results for cork oak leaf tissues (XLSX 83 kb)
11295_2014_717_MOESM3_ESM.xlsx (78 kb)
SM3 miRCat results for cork oak phellem tissues (XLSX 77 kb)
11295_2014_717_MOESM4_ESM.pdf (106 kb)
SM4 Northern blot DNA probes (PDF 105 kb)
11295_2014_717_MOESM5_ESM.pdf (398 kb)
SM5 Target genes for non-conserved miRNAs (PDF 398 kb)
11295_2014_717_MOESM6_ESM.xlsx (246 kb)
SM6 Target gene contigs in leaf tissues (XLSX 246 kb)
11295_2014_717_MOESM7_ESM.xlsx (191 kb)
SM7 Target gene contigs in cork tissues (XLSX 190 kb)


  1. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221PubMedCrossRefGoogle Scholar
  2. Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, DePamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51(6):991–1003PubMedCrossRefGoogle Scholar
  3. Barel G, Ginzberg I (2008) Potato skin proteome is enriched with plant defence components. J Exp Bot 59(12):3347–3357PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  5. Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568PubMedCrossRefGoogle Scholar
  6. Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604PubMedCrossRefGoogle Scholar
  7. Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9:278–286CrossRefGoogle Scholar
  8. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:114–117Google Scholar
  9. Chaves I, Pinheiro C, Paiva JA, Planchon S, Sergeant K, Renaut J, Graca JA, Costa G, Coelho AV, Ricardo CP (2009) Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue. Proteomics 9(17):4154–4175PubMedCrossRefGoogle Scholar
  10. Chen CJ, Liu Q, Zhang YC, Qu LH, Chen YQ, Gautheret D (2011) Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol 8:538–547PubMedCrossRefGoogle Scholar
  11. Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160PubMedCentralPubMedCrossRefGoogle Scholar
  12. Conde D, González-Melendi P, Allona I (2013) Poplar stems show opposite epigenetic patterns during winter dormancy and vegetative growth. Trees 27(1):311–320. doi: 10.1007/s00468-012-0800-x CrossRefGoogle Scholar
  13. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–13CrossRefGoogle Scholar
  14. Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676PubMedCrossRefGoogle Scholar
  15. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of miRNA genes. Plant Cell 23(2):431–442PubMedCentralPubMedCrossRefGoogle Scholar
  16. Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156(4):1990–2010PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dharmawardhana P, Brunner AM, Strauss SH (2010) Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa. BMC Genomics 11:150PubMedCentralPubMedCrossRefGoogle Scholar
  18. Donaire L, Pedrola L, de la Rosa R, Llave C (2011) High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS ONE 6(11):e27916PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ehlers K, van Bel AJ (2010) Dynamics of plasmodesmal connectivity in successive interfaces of the cambial zone. Planta 231(2):371–385. doi: 10.1007/s00425-009-1046-8 PubMedCrossRefGoogle Scholar
  20. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS One 2:e219PubMedCentralPubMedCrossRefGoogle Scholar
  21. Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E (2009) Transcriptomic profiling of heat-stress response in potato periderm. J Exp Bot 60(15):4411–4421PubMedCrossRefGoogle Scholar
  22. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMedCentralPubMedCrossRefGoogle Scholar
  23. Götz S, Arnold R, Sebastián-León P, Martín-Rodríguez S, Tischler P, Jehl M-A, Dopazo J, Rattei T, Conesa A (2011) B2G-FAR, a species centered GO annotation repository. Bioinformatics 27(7):919–924PubMedCentralPubMedCrossRefGoogle Scholar
  24. Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342:129–138PubMedGoogle Scholar
  25. Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P (2012) A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 19:1–17CrossRefGoogle Scholar
  26. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16:673–695PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T (2012) Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Plant Mol Biol 78(6):561–576PubMedCrossRefGoogle Scholar
  28. Hsieh LC, Lin SI, Shih ACC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132PubMedCentralPubMedCrossRefGoogle Scholar
  29. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  30. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5(3):e57PubMedCentralPubMedCrossRefGoogle Scholar
  31. Khan GA, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Briere C (2011) MicroRNAs as regulators of root development and architecture. Plant Mol Biol 77(1–2):47–58. doi: 10.1007/s11103-011-9793-x PubMedCrossRefGoogle Scholar
  32. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kinoshitaa N, Wanga H, Kasaharac H, Liua J, MacPhersona C, Machidab Y, Kamiyac Y, Hannahe MA, Chuaa N-H (2012) IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24(9):3590–3602CrossRefGoogle Scholar
  34. Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23:2639–2649PubMedCentralPubMedCrossRefGoogle Scholar
  35. Li Z, Ender C, Meister G, Moore PS, Chang Y, John B (2012) Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40(14):6787–6799PubMedCentralPubMedCrossRefGoogle Scholar
  36. Liu J, Vance CP (2010) Crucial roles of sucrose and miRNA399 in systemic signaling of P deficiency—a tale of two team players? Plant Signal Behav 5(12):1–5Google Scholar
  37. Loss-Morais G, Waterhouse PM, Margis R (2013) Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct 8:6PubMedCentralPubMedCrossRefGoogle Scholar
  38. Lu S, Sun Y-H, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203PubMedCentralPubMedCrossRefGoogle Scholar
  39. Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22(4):1104–1117PubMedCentralPubMedCrossRefGoogle Scholar
  40. Martínez G, Forment J, Llave C, Pallás V, Gómez G (2011) High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS ONE 6(5):e19523PubMedCentralPubMedCrossRefGoogle Scholar
  41. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190PubMedCentralPubMedCrossRefGoogle Scholar
  42. Mica E, Piccolo V, Delledonne M, Ferrarini A, Pezzotti M, Casati C, Del Fabbro C, Valle G, Policriti A, Morgante M, Pesole G, Pe ME, Horner D (2009) High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics 10(1):558PubMedCentralPubMedCrossRefGoogle Scholar
  43. Morin RD, Aksay G, Dolgosheina E, Ebhardt HA, Magrini V, Mardis ER, Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18(4):571–584PubMedCentralPubMedCrossRefGoogle Scholar
  44. Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008a) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18(10):1602–1609PubMedCentralPubMedCrossRefGoogle Scholar
  45. Moxon S, Schwach F, Dalmay T, MacLean D, Studholme DJ, Moulton V (2008b) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24(19):2252–2253. doi: 10.1093/bioinformatics/btn428 PubMedCrossRefGoogle Scholar
  46. Ong SS, Wickneswari R (2012) Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium. PLoS One 7(11):e49662PubMedCentralPubMedCrossRefGoogle Scholar
  47. Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ (2012) Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159(4):1713–1729PubMedCentralPubMedCrossRefGoogle Scholar
  48. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62(6):960–976PubMedGoogle Scholar
  49. Pausas JG (1997) Resprouting of Quercus suber in NE Spain after fire. J Veg Sci 8:703–706CrossRefGoogle Scholar
  50. Pereira H (1988) Chemical-composition and variability of cork from Quercus-suber L. Wood Sci Technol 22(3):211–218CrossRefGoogle Scholar
  51. Pereira H (2007) Cork: biology, production and uses. Elsevier, AmsterdamGoogle Scholar
  52. Puzey JR, Karger A, Axtell M, Kramer EM (2012) Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets. PLoS One 7(3):e33034PubMedCentralPubMedCrossRefGoogle Scholar
  53. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ricardo CP, Martins I, Francisco R, Sergeant K, Pinheiro C, Campos A, Renaut J, Fevereiro P (2011) Proteins associated with cork formation in Quercus suber L. stem tissues. J Proteomics 74(8):1266–1278PubMedCrossRefGoogle Scholar
  55. Robischon M, Du J, Miura E, Groover A (2011) The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol 155(3):1214–1225PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12:129PubMedCentralPubMedCrossRefGoogle Scholar
  57. Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009a) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 60(2):697–707PubMedCentralPubMedCrossRefGoogle Scholar
  58. Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat S, Molinas M, Figueras M (2009b) CYP86A33-targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiol 149(2):1050–1060PubMedCentralPubMedCrossRefGoogle Scholar
  59. Serra O, Figueras M, Franke R, Prat S, Molinas M (2010a) Unraveling ferulate role in suberin and periderm biology by reverse genetics. Plant Signal Behav 5(8):953–958PubMedCentralPubMedCrossRefGoogle Scholar
  60. Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M (2010b) A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant J 62(2):277–290PubMedCrossRefGoogle Scholar
  61. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100. doi: 10.1146/annurev.biochem.76.052705.162114 PubMedCrossRefGoogle Scholar
  62. Siddiqui S, Pawelek J, Handerson T, Lin C, Dickson R et al (2005) Coexpression of beta-1,6-N-acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 14:2517–2523. doi: 10.1158/1055-9965.EPI-05-0464 PubMedCrossRefGoogle Scholar
  63. Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136(3):461–472PubMedCentralPubMedCrossRefGoogle Scholar
  64. Sobala A, Hutvagner G (2011) Transfer RNA-derived fragments: origins, processing, and functions. Wiley Interdiscip Rev RNA 2(6):853–862PubMedCrossRefGoogle Scholar
  65. Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M (2007) A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol 144(1):419–431PubMedCentralPubMedCrossRefGoogle Scholar
  66. Soler M, Serra O, Fluch S, Molinas M, Figueras M (2011) A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Planta 233(5):933–945PubMedCrossRefGoogle Scholar
  67. Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80(1):17–36PubMedCrossRefGoogle Scholar
  68. Sun YH, Shi R, Zhang XH, Chiang VL, Sederoff RR (2012) MicroRNAs in trees. Plant Mol Biol 80(1):37–53PubMedCrossRefGoogle Scholar
  69. Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21(8):805–811PubMedCrossRefGoogle Scholar
  70. Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309PubMedCrossRefGoogle Scholar
  71. Todesco M, Balasubramanian S, Cao J, Ott F, Sureshkumar S, Schneeberger K, Meyer RC, Altmann T, Weigel D (2012) Natural variation in biogenesis efficiency of individual Arabidopsis thaliana microRNAs. Curr Biol 22(2):166–170PubMedCrossRefGoogle Scholar
  72. Varela MC (1995) Conservation of genetic resources of Quercus suber in Portugal. European Forest Resources Programme (EUFORGEN)Google Scholar
  73. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21):4211–4218PubMedCrossRefGoogle Scholar
  74. Wu B, Wang M, Ma Y, Yuan L, Lu S (2012) High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. PLoS ONE 7(9):e44385PubMedCentralPubMedCrossRefGoogle Scholar
  75. Xing H, Pudake R, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 12(1):178PubMedCentralPubMedCrossRefGoogle Scholar
  76. Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DM, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera Mdel R, Giuliano G, Pietrella M, Perrotta G, Facella P, O’Brien K, Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin H, Massa AN, Geoffroy M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JM, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang J, Veilleux RE, Bachem CW, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert B, Goverse A, van Ham RC, Visser RG (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195PubMedCrossRefGoogle Scholar
  77. Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Plant Cell 8(6):R96Google Scholar
  78. Zalepa-King L, Citovsky V (2013) A plasmodesmal glycosyltransferase-like protein. PLoS ONE 8(2):e58025. doi: 10.1371/journal.pone.0058025 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Zhang J, Gao G, Chen JJ, Taylor G, Cui KM, He XQ (2011) Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. New Phytol 192(4):869–884. doi: 10.1111/j.1469-8137.2011.03855.x PubMedCrossRefGoogle Scholar
  80. Zhao C-Z, Xia H, Frazier T, Yao Y-Y, Bi Y-P, Li A-Q, Li M-J, Li C-S, Zhang B-H, Wang X-J (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10(1):3PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S, Wu L, Shen N (2010) miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116(26):5885–5894PubMedCrossRefGoogle Scholar
  82. Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18(9):1456–1465PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Inês Chaves
    • 1
    • 2
  • Yao-Cheng Lin
    • 3
    • 4
  • C. Pinto-Ricardo
    • 2
  • Yves Van de Peer
    • 3
    • 4
    • 5
  • Célia Miguel
    • 1
    • 2
  1. 1.Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  3. 3.Department of Plant Systems BiologyVIBGhentBelgium
  4. 4.Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
  5. 5.Genomics Research Institute (GRI)University of PretoriaPretoriaSouth Africa

Personalised recommendations