Tree Genetics & Genomes

, Volume 10, Issue 3, pp 711–719 | Cite as

Bayesian estimation of genetic parameters for growth, stem straightness, and survival in Eucalyptus globulus on an Andean Foothill site

  • Freddy Mora
  • Nicolle Serra
Original Paper


Knowledge of the genetic variation of key economic traits in Eucalyptus globulus under cold conditions is crucial to the genetic improvement of environmental tolerances and other economic traits. A Bayesian analysis of genetic parameters for quantitative traits was carried out in 37 E. globulus open-pollinated families under cold conditions in southern Chile. The trial is located in the Andean foothills, in the Province of Bío-Bío. The Bayesian approach was performed using Gibbs sampling algorithm. Multi-trait linear and threshold models were fitted to phenotypic data (growth traits, survival, and stem straightness). Fifteen years after planting, height, diameter at breast height, and stem volume were found to be weakly to moderately heritable with Bayesian credible intervals (probability of 90 %): \( {\widehat{h}}^2 \) = 0.009–0.102, \( {\widehat{h}}^2 \) = 0.031–0.185, and \( {\widehat{h}}^2 \) = 0.045–0.205, respectively. Stem straightness was found to be weakly to moderately heritable ranging from 0.032 to 0.208 (Bayesian 90 % credible interval); posterior mode \( {\widehat{h}}^2 \) = 0.091. Tree survival at age of 15 years was high in the trial (84.8 %) with such heritability values ranging from 0.072 to 0.157. Survival was non-significantly genetically correlated to growth and stem straightness. Stem volume had the highest predicted genetic gains ranging from 17.9 to 23.7 % (selection rate of 15.8 and 8.3 %, respectively). The results of this study confirm the potential for selective breeding of this eucalypt in areas of southern Chile where cold is a significant constraint.


Cold environments Genetic gain Heritability Breeding values Gibbs sampling 


Data archiving statement

We followed standard Tree Genetics and Genomes policy. In addition, supplementary information of the trial and family numbers are listed in Supplemental File 1.

Supplementary material

11295_2014_716_MOESM1_ESM.xlsx (60 kb)
Supplemental File 1 (XLSX 59 kb)


  1. Acuña CV, Fernandez P, Villalba PV, García MN, Hopp HE, Poltri SNM (2012) Discovery, validation, and in silico functional characterization of EST-SSR markers in Eucalyptus globulus. Tree Genet Genomes 8:289–301CrossRefGoogle Scholar
  2. Arriagada O, Mora F, Dellarossa JC, Ferreira MFS, Cervigni GDL, Schuster I (2012) Bayesian mapping of quantitative trait loci (QTL) controlling soybean cyst nematode resistant. Euphytica 186:907–917CrossRefGoogle Scholar
  3. Blackburn DP, Hamilton MG, Harwood CE, Baker TG, Potts BM (2013) Assessing genetic variation to improve stem straightness in Eucalyptus globulus. Ann For Sci 70:461–470CrossRefGoogle Scholar
  4. Boldman KG, Krise LA, Van Vleck LD, Katchman SD (1995) A manual for use of MTDFREML. In: A Set of programs to obtain estimates of variance and covariance. University of Nebraska, Lincoln, NE, USA, p 120, Department of Agriculture, Agricultural Research ServiceGoogle Scholar
  5. Broadmeadow MSJ, Ray D, Samuel CJA (2005) Climate change and the future for broad-leaved tree species in Britain. Forestry 78:145–161CrossRefGoogle Scholar
  6. Bundock PC, Potts BM, Vaillancourt RE (2008) Detection and stability of quantitative trait loci (QTL) in Eucalyptus globulus. Tree Genet Genomes 4:85–95CrossRefGoogle Scholar
  7. Burdon RD (2007) Short note—Coefficients of variation in variables with bounded scales. Silvae Genet 57:179–180Google Scholar
  8. Callister A, Bush DJ, Collins S, Davis W (2008) Prospects for genetic improvement of Eucalyptus cladocalyx in western Australia. N Z J For Sci 38:211–226Google Scholar
  9. Callister AN, England N, Collins S (2011) Genetic analysis of Eucalyptus globulus diameter, straightness, branch size, and forking in western Australia. Can J For Res 41:1333–1343CrossRefGoogle Scholar
  10. Cané-Retamales C, Mora F, Vargas-Reeve F, Perret S, Contreras-Soto R (2011) Bayesian threshold analysis of breeding values, genetic correlation and heritability of flowering intensity in Eucalyptus cladocalyx under arid conditions. Euphytica 178:177–183CrossRefGoogle Scholar
  11. Cappa EP, Pathauer PS, López GA (2010) Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina. Tree Genet Genomes 6:981–994CrossRefGoogle Scholar
  12. Cappa EP, Varona L (2013) An assessor-specific Bayesian multi-threshold mixed model for analyzing ordered categorical traits in tree breeding. Tree Genet Genomes. doi: 10.1007/s11295-013-0648-2 Google Scholar
  13. Cockerham CC, Weir BS (1984) Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40:157–164PubMedCrossRefGoogle Scholar
  14. Coopman RE, Jara JC, Escobar R, Corcuera LJ, Bravo LA (2010) Genotypic variation in morphology and freezing resistance of Eucalyptus globulus seedlings subjected to drought hardening in nursery. Electron J Biotechnol. doi: 10.2225/vol13-issue1-fulltext-10 Google Scholar
  15. Costa E, Silva F, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two eucalyptus globulus clones differing in drought tolerance. Tree Physiol 24:1165–1172CrossRefGoogle Scholar
  16. Costa E, Silva F, Shvaleva A, Broetto F, Ortuño MF, Rodrigues ML, Almeida MH, Chaves MM, Pereira JS (2008) Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance. Tree Physiol 29:77–86CrossRefGoogle Scholar
  17. Costa E, Silva J, Hardner CM, Potts BM (2010) Genetic variation and parental performance under inbreeding for growth in Eucalyptus globulus. Ann For Sci 67:606CrossRefGoogle Scholar
  18. Faria CU, Pires BC, Vozzi AP, Magnabosco CU, Koury Filho W, Viu MAO, Oliveira HN, Lôbo RB (2010) Genetic correlations between categorical morphological traits in nelore cattle by applying Bayesian analysis under a threshold animal model: Genetic correlations between categorical morphological traits. J Anim Breed Genet 127:377–384PubMedCrossRefGoogle Scholar
  19. Hallander J, Waldmann P (2009) Optimization of selection contribution and mate allocations in monoecious tree breeding populations. BMC Genet. doi: 10.1186/1471-2156-10-70 PubMedCentralPubMedGoogle Scholar
  20. Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194PubMedCrossRefGoogle Scholar
  21. Kadarmideen HN, Janss LLG (2005) Evidence of a major gene from Bayesian segregation analyses of liability to osteochondral diseases in pigs. Genetics 171(3):1195–1206PubMedCentralPubMedCrossRefGoogle Scholar
  22. Longin CFH, Sieber AN, Reif JOC (2013) Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breed. doi: 10.1111/pbr.12064 Google Scholar
  23. Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid PE (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. For Genet 9:217–231Google Scholar
  24. Meissner M, Orsini E, Ruschhaupt M, Melchinger AE, Hincha DK, Heyer AG (2013) Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Plant Cell Environ 36:1256–1267CrossRefGoogle Scholar
  25. Mora F, Perret S, Scapim CA, Arnhold E (2010) Genetic parameters of growth and survival in Acacia saligna shrubs. Ciencia e Investig Agrar 37:5–14CrossRefGoogle Scholar
  26. Mora F, Gleadow R, Perret S, Scapim CA (2009a) Genetic variation for early flowering, survival and growth in sugar gum (Eucalyptus cladocalyx F. Muell) in southern Atacama Desert. Euphytica 169:335–344CrossRefGoogle Scholar
  27. Mora F, Scapim CA, Pinto RJB (2009b) El análisis bayesiano y la precisión de los valores de la heredabilidad en especies perennes. Ciênc Florestal 19:345–351Google Scholar
  28. Mora F, Saavedra J (2012) Combining genetic gain and diversity under an individual selection method in a selected provenance of Eucalyptus cladocalyx. Cienc e Investig Agraria 39:177–184CrossRefGoogle Scholar
  29. Mora F, Rubilar R, Emhart VI, Saavedra J (2013) Predicción bayesiana de parámetros genéticos en clones de Eucalyptus globulus bajo condiciones de suplemento hídrico. Cienc Florestal 23:529–536Google Scholar
  30. Moraga PS, Escobar R, Valenzuela SA (2006) Resistance to freezing in three Eucalyptus globulus Labill subspecies. Electron J Biotechnol 9(3):310–314Google Scholar
  31. Moura JCMS, Araújo P, Brito MS, Souza UR, Viana JOF, Mazzafera P (2012) Validation of reference genes from Eucalyptus spp. under different stress conditions. BMC Research Notes. doi: 10.1186/1756-0500-5-634
  32. Muir WM (2005) Incorporation of competitive effects in forest tree or animal breeding programs. Genetics 170:1247–1259PubMedCentralPubMedCrossRefGoogle Scholar
  33. Navarrete-Campos D, Bravo LA, Rubilar RA, Emhart V, Sanhueza R (2013) Drought effects on water use efficiency, freezing tolerance and survival of Eucalyptus globulus and Eucalyptus globulus x nitens cuttings. New For 44:119–134CrossRefGoogle Scholar
  34. Neath AA, Cavanaugh JE (2012) The Bayesian information criterion: background, derivation, and applications. Comput Stat 4:199–203CrossRefGoogle Scholar
  35. Pavan BE, Paula RC, Perecin D, Candido LS, Scarpinati EA (2011) Minimizing inter-genotypic competition effects to predict genetic values and selection in forestry genetic tests. Sci Agric 68:671–678CrossRefGoogle Scholar
  36. Rasmussen-Poblete S, Valdés J, Gamboa M, Valenzuela P, Krauskopf E (2008) Generation and analysis of an Eucalyptus globulus cDNA library constructed from seedlings subjected to low temperature conditions. Electron J Biotechnol. doi: 10.2225/vol11-issue2-fulltext-14 Google Scholar
  37. R Development Core Team (2011) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Accessed 21 August 2013
  38. Rodriguez R, Real P, Espinosa M, Perry DA (2009) A process-based model to evaluate site quality for Eucalyptus nitens in the Bío-Bío region of Chile. Forestry 82:149–162CrossRefGoogle Scholar
  39. Santos AI, Ribeiro RP, Vargas L, Mora F, Filho LA, Fornari DC, Oliveira SN (2011) Bayesian genetic parameters for body weight and survival of Nile tilapia farmed in Brazil. Pesq Agrop Brasileira 46:33–43CrossRefGoogle Scholar
  40. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12:30–43PubMedCentralPubMedCrossRefGoogle Scholar
  41. Schenkel FS, Schaeffer LR, Boettcher PJ (2002) Comparison between estimation of breeding values and fixed effects using Bayesian and empirical BLUP estimation under selection on parents and missing pedigree information. Genet Sel Evol 34:41–59PubMedCentralPubMedCrossRefGoogle Scholar
  42. Schreiber SG, Hamann A, Hacke UG, Thomas BR (2013) Sixteen years of winter stress: an assessment of cold hardiness, growth performance and survival of hybrid poplar clones at a boreal planting site. Plant Cell Environ 36:419–428PubMedCrossRefGoogle Scholar
  43. Stock KF, Distl O, Hoeschele I (2007) Bayesian estimation of genetic parameters for multivariate threshold and continuous phenotypes and molecular genetic data in simulated horse populations using Gibbs sampling. BMC Genet. doi: 10.1186/1471-2156-8-19 PubMedCentralPubMedGoogle Scholar
  44. Van Tassell CP, Van Vleck LD (1996) Multiple-trait Gibbs sampler for animal models: flexible programs for Bayesian and likelihood-based (co)variance component inference. J Anim Sci 74:2586–2597PubMedGoogle Scholar
  45. Van Tassell CP, Van Vleck LD, Gregory KE (1998) Bayesian analysis of twinning and ovulation rates using a multiple‑trait threshold model and Gibbs sampling. J Anim Sci 76:2048–2061PubMedGoogle Scholar
  46. Vargas-Reeve F, Mora F, Perret S, Scapim CA (2013) Heritability of stem straightness and genetic correlations in Eucalyptus cladocalyx in the semi-arid region of Chile. Crop Breed Appl Biotechnol 13:107–112CrossRefGoogle Scholar
  47. Waldmann P, Ericsson T (2006) Comparison of REML and Gibbs sampling estimates of multi-trait genetic parameters in Scots pine. Theor Appl Genet 112:1441–1451PubMedCrossRefGoogle Scholar
  48. Ye TZ, Jayawickrama KJS, St Clair JB (2010) Realized gains from block-plot coastal Douglas-fir trials in the northern Oregon cascades. Silvae Genet 59:29–39Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Instituto de Biología Vegetal y BiotecnologíaUniversidad de TalcaTalcaChile
  2. 2.Semillas Imperial SpALos ÁngelesChile

Personalised recommendations