Advertisement

Tree Genetics & Genomes

, Volume 10, Issue 3, pp 585–603 | Cite as

Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering

  • Mari Carmen García-López
  • Isabel Vidoy
  • Jaime Jiménez-Ruiz
  • Antonio Muñoz-Mérida
  • Ana Fernández-Ocaña
  • Raul de la Rosa
  • Juan Bautista Barroso
  • Francisco Navarro
  • Oswaldo Trelles
  • Carmen R. Beuzón
  • Araceli Barceló
  • Victoriano Valpuesta
  • Francisco LuqueEmail author
Original Paper

Abstract

Plant development is a complex process scarcely studied in woody plants. For a study of the genetic control of the juvenile-to-adult transition in Olea europaea L. and for a determination of the timing of the genetic changes, five seedlings were studied by transcriptomic analysis during the developmental process. Microarray analysis over 33 months of growth showed a general trend toward gene repression. There were 1,034 unigenes at a fourfold change, which decreased over time, and 381 that were induced. The expression profile of putative homologs to Arabidopsis thaliana transition genes as squamosa promoter binding protein-like, short vegetative phase or APETALA 2-like transcription-factor families, and the microarray analysis showed two main patterns of changes over development. Thus, at eightfold change, 49 unigenes were repressed and five induced in a quite constant slope over time, while another group underwent notable changes near a genetic transition point. In fact, 22 unigenes of the latter group had sharp repression and seven a strong induction close to the transition time between 9 and 15 months. Notably, a seedling deficiency in the juvenile-to-adult transition failed to induce the genes that are usually upregulated in the transition of normal seedlings. The genetic changes that control the juvenile-to-adult transition appear to occur when the juvenile olive tree reaches around 45 nodes in size. Finally, at least some of the main components of the Arabidopsis pathway for the genetic control of the development phase transitions were found in olive.

Keywords

Olea europaea Plant development Juvenile Adult Phase transition Transcriptomic analysis 

Notes

Acknowledgments

This work was financed by Fundación Genoma España. Sample preparations in a robotic work station and Q-RT-PCRs were performed at the Servicios Técnicos de Investigación of the Universidad de Jaén.

Ethical standards

The experiments performed in this work comply with the laws of Spain and the European Union.

Conflict of interest

None.

Data Archiving Statement

Microarray design and raw data are available at GEO database accession number GSE52213.

References

  1. Allsopp A (1967) Heteroblastic development in vascular plants. Adv Morphog 6:127–171PubMedCrossRefGoogle Scholar
  2. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bellini E (1992) Behaviour of some genetic characters in olive seedlings obtained by cross-breeding. Acta Hortcult 317:197–208Google Scholar
  4. Bellini E (1993) Genetic variabiltiy and heritability of some characters in cross-bred olive seedlings. Olivae 49:21–34Google Scholar
  5. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  6. Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549PubMedCrossRefGoogle Scholar
  7. De la Rosa R, Kiran AI, Barranco D, Leon L (2006) Seedling vigor as a preselection criterion for short juvenile period in olive breeding. Aust J Agric Res 57:477–481CrossRefGoogle Scholar
  8. Donaire L, Pedrola L, de la Rosa R, Llave C (2011) High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.). PLoS ONE 6:e27916PubMedCentralPubMedCrossRefGoogle Scholar
  9. Evans MMS, Passas HJ, Poethig RS (1994) Heterochronic effects of glossy15 mutations on epidermal cell identity in maize. Development 120:1971–1981PubMedGoogle Scholar
  10. Fernández-Ocaña A, García-López MC, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas FJ, Barroso JB, Luque F (2010) Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet 6:891–903CrossRefGoogle Scholar
  11. Fornara F, Coupland G (2009) Plant phase transitions make a splash. Cell 138:625–627PubMedCrossRefGoogle Scholar
  12. Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hackett WP (1985) Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev 7:109–155Google Scholar
  14. Hartmann HT, Kester DE, Davies FT Jr, Geneve RL (2002) Plant propagation principles and practices, 7th edn. Prentice Hall, Upper Saddle River, NJ, p 199–220Google Scholar
  15. Jones CS (1999) An essay on juvenility, phase change, and heteroblasty in seed plants. Int J Plant Sci 160:S105–S111PubMedCrossRefGoogle Scholar
  16. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua NH, Park CM (2007) The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19:2736–2748PubMedCentralPubMedCrossRefGoogle Scholar
  17. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 102:9412–9417PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lavee S, Avidan N, Haskal A, Ogrodovich A (1996) Juvenility period reduction in olive seedlings — a tool for enhancement of breeding. Olivae 60:33–41Google Scholar
  19. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402PubMedCentralPubMedCrossRefGoogle Scholar
  20. Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120PubMedCrossRefGoogle Scholar
  21. Moreno-Alías I, Gracia A, León L, De la Rosa R, Rapoport HF (2009) Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees 23:181–187CrossRefGoogle Scholar
  22. Moreno-Alías I, Rapoport HF, López R, León L, De la Rosa R (2010) Optimizing early flowering and pre-selection for short juvenile period in olives seedlings. HortSci 45:519–522Google Scholar
  23. Muñoz-Mérida A, Cañada A, González-Plaza JJ, Blanco AM, García-López MC, Rodríguez JM, Pedrola L, Sicardo MD, Hernández ML, De la Rosa R, Belaj A, Gil-Borja M, Luque F, Martínez-Rivas JM, Pisano DG, Trelles O, Valpuesta V, Beuzón CR (2013) De novo assembly and functional annotation of the olive (Olea europaea) transcriptome. DNA Res. doi: 10.1093/dnares/dss036 PubMedCentralPubMedGoogle Scholar
  24. Rallo P, Jiménez R, Ordovás J, Suárez MP (2008) Possible early selection of short juvenile period olive plants based on seedling traits. Aust J Agric Res 59:933–940CrossRefGoogle Scholar
  25. Robinson LW, Wareing PF (1969) Experiments on the juvenile-adult phase change in some woody species. New Phytol 68:67–78CrossRefGoogle Scholar
  26. Santos-Antunes F, León L, de la Rosa R, Alvarado J, Mohedo A, Trujillo I, Rallo L (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortSci 40:1213–1215Google Scholar
  27. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527PubMedCrossRefGoogle Scholar
  28. Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE (2008) Microarray analysis of vegetative phase change in maize. Plant J 56:1045–1057PubMedCrossRefGoogle Scholar
  29. Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS (2011) miRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012. doi: 10.1371/journal.pgen.1002012 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547PubMedCentralPubMedCrossRefGoogle Scholar
  31. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759PubMedCentralPubMedCrossRefGoogle Scholar
  32. Zimmerman RH (1971) Flowering in crabapple seedlings. Methods of shortening the juvenile phase. J Am Soc Hortic Sci 96:404–411Google Scholar
  33. Zimmerman RH (1973) Juvenility and flowering of fruit trees. Acta Horticult 34:139–143Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mari Carmen García-López
    • 1
  • Isabel Vidoy
    • 2
  • Jaime Jiménez-Ruiz
    • 1
  • Antonio Muñoz-Mérida
    • 3
  • Ana Fernández-Ocaña
    • 4
  • Raul de la Rosa
    • 5
  • Juan Bautista Barroso
    • 1
  • Francisco Navarro
    • 1
  • Oswaldo Trelles
    • 3
  • Carmen R. Beuzón
    • 6
  • Araceli Barceló
    • 2
  • Victoriano Valpuesta
    • 7
  • Francisco Luque
    • 1
    Email author
  1. 1.Departamento de Biología ExperimentalUniversidad de JaénJaénSpain
  2. 2.Centro de Investigación y Formación Agraria de ChurrianaInstituto de Investigación y Formación Agraria y Pesquera (IFAPA)MálagaSpain
  3. 3.Departamento de Arquitectura de Computadores, ETSI InformáticaUniversidad de MálagaMálagaSpain
  4. 4.Departamento de Biología Animal, Vegetal y EcologíaUniversidad de JaénJaénSpain
  5. 5.Centro de Investigación y Formación Agraria de Alameda del ObispoInstituto de Investigación y Formación Agraria y Pesquera (IFAPA)CórdobaSpain
  6. 6.Departamento de Biología Celular, Genética y FisiologíaMálagaSpain
  7. 7.Departamento de Biología Molecular y BioquímicaMálagaSpain

Personalised recommendations