Advertisement

Tree Genetics & Genomes

, Volume 10, Issue 3, pp 503–512 | Cite as

Using simulations to optimize genetic diversity in Prunus avium seed harvests

  • Céline Blanc-Jolivet
  • B. Degen
Original Paper

Abstract

Conservation of forest genetic resources has drawn much attention in the last decades, as it prevents negative effects of genetic erosion on adaptability potential of material used for afforestation. According to the German Act on Forest Reproductive Material, seed harvesting must occur in certified stands. Seed lots must stem from a minimum number of seed-trees, although the effect of this limit on genetic diversity has not been addressed. In this study, we aimed at understanding the effect of seed harvesting strategies on genetic diversity. We used the simulation model Eco-Gene and real molecular data to disentangle the effects of number of seed-trees and harvesting method in three wild cherry (Prunus avium) stands. Our results outline the importance of harvesting genetically different or distant seed-trees in maintaining genetic diversity. Besides optimal sampling strategy, we also recommend minimum harvesting of 25 seed-trees to reach 90 % of genetic diversity available within the stand. The outcomes of these results for the practice are also discussed.

Keywords

Genetic diversity Forest reproductive material Simulation Seed stand Prunus avium 

Notes

Acknowledgments

We would like to thank C. Maalaoui, M. Spauszus, D. Boedecker, and M. Wellern for field work, R. Kätzel, F. Becker, M. Konnert, M. Rogge for organising seed harvesting, A. Meier, S. Jelkmann, S. Jencsik and I. Schulze for conducting genetic analysis on field-sampled seeds and adult trees, M. Liesebach and two anonymous reviewers for comments on the manuscript. This study was supported by the German Ministry of Food, Agriculture and Consumer Protection (BMELV) (grant MuD-Vorhaben (07/B11009) “Etablierung einer Standardmethode zur genetisch nachhaltigen Ernte von forstlichem Vermehrungsgut in zugelassenen Beständen”).

Supplementary material

11295_2014_699_MOESM1_ESM.pdf (20 kb)
ESM 1 (PDF 19 kb)
11295_2014_699_MOESM2_ESM.pdf (17 kb)
ESM 2 (PDF 16 kb)
11295_2014_699_MOESM3_ESM.pdf (2.5 mb)
ESM 3 (PDF 2582 kb)
11295_2014_699_MOESM4_ESM.pdf (16 kb)
ESM 4 (PDF 15 kb)
11295_2014_699_MOESM5_ESM.pdf (23 kb)
ESM 5 (PDF 23 kb)

References

  1. Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188PubMedCrossRefGoogle Scholar
  2. Bacles CFE, Jump AS (2011) Taking a tree’s perspective on forest fragmentation genetics. Trends Plant Sci 16:13–18PubMedCrossRefGoogle Scholar
  3. Biedenkopf S, Ammer C, Müller-Starck G (2007) Genetic aspects of seed harvests for the artificial regeneration of Wild service tree (Sorbus torminalis [L.] Crantz). New Forest 33:1–12CrossRefGoogle Scholar
  4. Blaskesley D, Pakkad G, James C, Torre F, Elliott S (2004) Genetic diversity of Castanopsis acuminatissima (Bl.). A. DC. In northern Thailand and the selection of seed trees for reforestation. New Forest 27:89–100CrossRefGoogle Scholar
  5. Cottrell JE, Vaughan SP, Connolly T, Sing L, Moodley DJ, Russell K (2009) Contemporary pollen flow, characterization of the maternal ecological neighbourhood and mating patterns in wild cherry (Prunus avium L.). Heredity 103:118–128PubMedCrossRefGoogle Scholar
  6. Crane MB, Lawrence WJC (1929) Genetical and cytological aspects of incompatibility and sterility in cultivated fruits. J Pomol Hort Sci 7:276–301Google Scholar
  7. Cruse-Sanders JM, Hamrick JL, Ahumada JA (2005) Consequences of harvesting for genetic diversity in American ginseng (Panax quinquefolius L.): a simulation study. Biodivers Conserv 14:493–504CrossRefGoogle Scholar
  8. de Lacerda AEB, Kanashiro M, Sebbenn AM (2008) Long-pollen movement and deviation of random mating in a low-density continuous population of a tropical tree Hymenaea courbaril in the Brazilian Amazon. Biotropica 40:462–470CrossRefGoogle Scholar
  9. Degen B, Blanc L, Caron H, Maggia L, Kremer A, Gourlet-Fleury S (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401CrossRefGoogle Scholar
  10. Degen B, Gregorius HR, Scholz F (1996) ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genet 45:323–329Google Scholar
  11. Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764PubMedCrossRefGoogle Scholar
  12. Feres JM, Sebnenn AM, Guidugli MC, Mestriner MA, Moraes ML, Alzate-Marin AL (2012) Mating system parameters at hierarchical levels of fruits, individuals and populations in the Brazilian insect-pollinated tropical tree, Tabebuia roseo-alba (Bignoniaceae). Conserv Genet 13:393–405CrossRefGoogle Scholar
  13. Gapare WJ, Aitken SN (2005) Strong spatial genetic structure in peripheral but not core populations of Sitka spruce Picea sitchensis (Bong.) Carr. Mol Ecol 14:2659–2667PubMedCrossRefGoogle Scholar
  14. Gapare WJ, Yanchuk AD, Aitken SN (2008) Optimal sampling strategies for capture of genetic diversity differ between core and peripheral populations of Picea sitchensis (Bong.) Carr. Conserv Genet 9:411–418CrossRefGoogle Scholar
  15. Garcia C, Arroyo JM, Godoy JA, Jordano P (2005) Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb L. population. Mol Ecol 14:1821–1830PubMedCrossRefGoogle Scholar
  16. Gregorius HR, Roberds JH (1986) Measurement of genetic differentiation among subpopulations. Theor Appl Genet 71:826–834PubMedCrossRefGoogle Scholar
  17. Gregorius HR (1974) Genetischer abstand zwischen populationen. I. Zur konzeption der abstandsmessung. Silvae Genet 23:22–27Google Scholar
  18. Hanson TR, Brunsfeld SJ, Finegan B, Waits LP (2008) Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscape. Mol Ecol 17:2060–2073PubMedCrossRefGoogle Scholar
  19. Hoeltken AM (2005) Genetische Untersuchungen zu den Vorassetzungen und Konsequenzen einer rezedenten Lebensweise am Beispiel der Vogelkirsche (Prunus avium L.). PhD Thesis. University of Göttingen, GöttingenGoogle Scholar
  20. Hosius B, Leinemann L, Konnert M, Bergmann F (2006) Genetic aspects of forestry in the central Europe. Eur J For Res 125:407–417CrossRefGoogle Scholar
  21. Jolivet C, Degen B (2011) Spatial genetic structure in wild cherry (Prunus avium L.): II. Effect of density and clonal propagation on spatial genetic structure based on simulation studies. Tree Genet Genomes 7:541–552CrossRefGoogle Scholar
  22. Jolivet C, Hoeltken AM, Liesebach H, Steiner W, Degen B (2011) Spatial genetic structure in wild cherry (Prunus avium L.): I. variation among natural populations of different density. Tree Genet Genomes 7:271–283CrossRefGoogle Scholar
  23. Jolivet C, Hoeltken AM, Liesebach H, Steiner W, Degen B (2012) Mating patterns and pollen dispersal in four contrasting wild cherry populations (Prunus avium L.). Eur J For Res 131:1055–1069CrossRefGoogle Scholar
  24. Jolivet C, Rogge M, Degen B (2013) Molecular and quantitative signatures of biparental inbreeding depression in the self-incompatible tree species Prunus avium. Heredity 110:439–448PubMedCentralPubMedCrossRefGoogle Scholar
  25. Konnert M, Hussendörfer E (2002) Herkunftssicherung bei forstlichem Vermehrungsgut durch Referenzproben. Allg Forst Jagdztg 173:97–104Google Scholar
  26. Oddou-Muratorio S, Klein EK (2008) Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Mol Ecol 17:2743–2754PubMedCrossRefGoogle Scholar
  27. Oddou-Muratorio S, Klein EK, Austerlitz F (2005) Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol 14:4441–4452PubMedCrossRefGoogle Scholar
  28. Oddou-Muratorio S, Klein EK, Demesure-Musch B, Austerlitz F (2006) Real-time patterns of pollen flow in the wild-service tree, Sorbus torminalis (Rosaceae). III. Mating patterns and the ecological maternal neighborhood. Am J Bot 93:1650–1659PubMedCrossRefGoogle Scholar
  29. Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118:197–212CrossRefGoogle Scholar
  30. Rathmacher G, Niggemann M, Köhnen M, Ziegenhagen B, Bialozyt R (2010) Short-distance gene flow in Populus nigra L. accounts for small-scale spatial genetic structures - implications for in-situ conservation measures. Conserv Genet 11:1327–1338CrossRefGoogle Scholar
  31. Russell K (2003) EUFORGEN Technical Guidelines for Genetic Conservation and Use for Wild Cherry (Prunus avium). International Plant Genetics Resources Institute. Rome, ItalyGoogle Scholar
  32. Schueler S, Tusch A, Scholz F (2006) Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 15:3231–3243PubMedCrossRefGoogle Scholar
  33. Sebbenn AM, Carvalho ACM, Freitas MLM, Moraes SMB, Gaino A, da Silva JM, Jolivet C, Moraes MLT (2010) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134–145PubMedCentralPubMedCrossRefGoogle Scholar
  34. Siong Ng KK, Lee SL, Ueno S (2009) Impact of selective logging on genetic diversity of two tropical tree species with contrasting breeding systems using direct comparison and simulation methods. Forest Ecol Manag 257:107–116CrossRefGoogle Scholar
  35. Smouse PE, Sork VL (2004) Measuring pollen flow in forest trees: an exposition of alternative approaches. Forest Ecol Manag 197:21–38CrossRefGoogle Scholar
  36. Stoeckel S (2006) Impact de la propagation aséxuée et du système d’auto-incompatibilité gamétophytique sur la structuration et l’évolution de la diversité génétique d’une essence forestière entomophile et disséminée, Prunus avium L. PhD Thesis. Cemagref, FranceGoogle Scholar
  37. Stoeckel S, Grange J, Fernandez-Manjarres JF, Bilger I, Frascaria-Lacoste N, Mariette S (2006) Heterozygote excess in a self-incompatible and partially clonal forest tree species—Prunus avium L. Mol Ecol 15:2109–2118PubMedCrossRefGoogle Scholar
  38. Stoeckel S, Klein EK, Oddou-Muratorio S, Musch B, Mariette S (2011) Microevolution of S-allele frequencies in wild cherry populations: respective impacts of negative frequency dependent selection and genetic drift. Evolution 66:486–504PubMedCrossRefGoogle Scholar
  39. Vaughan SP, Cottrell JE, Moodley DJ, Connolly T, Russell K (2007) Distribution and fine-scale spatial-genetic structure in British wild cherry (Prunus avium L.). Heredity 98:274–283PubMedCrossRefGoogle Scholar
  40. Wernsdorfer H, Caron H, Gerber S, Cornu G, Rossi V, Mortier F, Gourlet-Fleury S (2011) Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes. Conserv Genet 12:15–29CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Thünen Institute of Forest GeneticsGrosshansdorfGermany

Personalised recommendations