Tree Genetics & Genomes

, Volume 10, Issue 3, pp 489–502 | Cite as

Dual RNA-seq of the plant pathogen Phytophthora ramorum and its tanoak host

  • Katherine J. Hayden
  • Matteo Garbelotto
  • Brian J. Knaus
  • Richard C. Cronn
  • Hardeep Rai
  • Jessica W. Wright
Original Paper

Abstract

Emergent diseases are an ever-increasing threat to forests and forest ecosystems and necessitate the development of research tools for species that often may have few pre-existing resources. We sequenced the mRNA expressed by the sudden oak death pathogen Phytophthora ramorum and its most susceptible forest host, tanoak, within the same tissue at two time points after inoculation, and in uninfected tanoak controls. Using the P. ramorum genome to differentiate host and pathogen transcripts, we detected more than 850 P. ramorum transcripts at 5 days post-inoculation and a concurrent upregulation of host genes usually associated with pathogenicity. At 1 day, in contrast, we did not detect pathogen expression or significant enrichment of functional categories of host transcripts relative to controls, highlighting the importance of sequencing depth for in planta studies of host–pathogen interactions. This study highlights processes in molecular host–pathogen interactions in forest trees and provides a first reference transcriptome for tanoak, allowing the preliminary identification of disease-related genes in this study and facilitating future work for this and other members of the family Fagaceae.

Keywords

Hemibiotroph Host–pathogen interactions Oomycete Pathogenesis Sudden oak death 

Supplementary material

11295_2014_698_MOESM1_ESM.pdf (1.3 mb)
ESM 1(PDF 1.32 MB)

References

  1. Altschul S (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1006/jmbi.1990.9999 PubMedCrossRefGoogle Scholar
  2. Anacker B, Rank N, Hüberli D et al (2008) Susceptibility to Phytophthora ramorum in a key infectious host: landscape variation in host genotype, host phenotype, and environmental factors. New Phytol 177:756–766. doi:10.1111/j.1469-8137.2007.02297.x PubMedCrossRefGoogle Scholar
  3. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. doi:10.1038/75556 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barakat A, DiLoreto D, Zhang Y et al (2009) Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection. Bmc Plant Biol 9:51. doi:10.1186/1471-2229-9-51 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Bergemann SE, Garbelotto M (2006) High diversity of fungi recovered from the roots of mature tanoak (Lithocarpus densiflorus) in northern California. Can J Bot 84:1380–1394. doi:10.1139/b06-097 CrossRefGoogle Scholar
  8. Bowcutt F (2011) Tanoak target: the rise and fall of herbicide use on a common native tree. Environ Hist 16:197–225. doi:10.1093/envhis/emr032 CrossRefGoogle Scholar
  9. Brasier C (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808. doi:10.1111/j.1365-3059.2008.01886.x CrossRefGoogle Scholar
  10. Brasier CM, Cooke DEL, Duncan JM (1999) Origin of a new Phytophthora pathogen through interspecific hybridization. Proc Natl Acad Sci U S A 96:5878–5883. doi:10.1073/pnas.96.10.5878 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Brasier C, Beales PA, Kirk SA et al (2005) Phytophthora kernoviae sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in the UK. Mycological Res 109:853–859. doi:10.1017/S0953756205003357 CrossRefGoogle Scholar
  12. Breshears DD, Allen CD (2002) The importance of rapid, disturbance-induced losses in carbon management and sequestration. Global Ecol Biogeography 11:1–5. doi:10.1046/j.1466-822X.2002.00274.x CrossRefGoogle Scholar
  13. Bullard J, Purdom E, Hansen K, Dudoit S (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94. doi:10.1186/1471-2105-11-94 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Burdon J, Thrall P, Ericson L (2006) The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39. doi:10.1146/annurev.phyto.43.040204.140238 PubMedCrossRefGoogle Scholar
  15. Chang S, Puryear J, Cairney J (2007) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  16. Cobb RC, Filipe JAN, Meentemeyer RK et al (2012) Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests. J Ecology 100(3):712–722. doi:10.1111/j.1365-2745.2012.01960.x CrossRefGoogle Scholar
  17. Collins B, Parke J, Lachenbruch B, Hansen E (2009) The effects of Phytophthora ramorum infection on hydraulic conductivity and tylosis formation in tanoak sapwood. Can J Forest Res 39:1766–1776. doi:10.1139/X09-097 CrossRefGoogle Scholar
  18. Conesa A, Gotz S, Garcia-Gomez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610 Google Scholar
  19. Croucher PJP, Mascheretti S, Garbelotto M (2013) Combining field epidemiological information and genetic data to comprehensively reconstruct the invasion history and the microevolution of the sudden oak death agent Phytophthora ramorum (Stramenopila: Oomycetes) in California. Biol Invasions 15:2281–2297. doi: 10.1007/s10530-013-0453-8Google Scholar
  20. Davidson J, Werres S, Garbelotto M, et al. (2003) Sudden Oak Death and associated diseases caused by Phytophthora ramorum. PHP. doi:10.1094/PHP-2003-0707-01-DG
  21. Davidson J, Patterson H, Rizzo D (2008) Sources of inoculum for Phytophthora ramorum in a redwood forest. Phytopathology 98:860–866. doi:10.1094/PHYTO-98-8-0860 PubMedCrossRefGoogle Scholar
  22. Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–462. doi:10.1104/pp. 123.2.453 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Donahoo R, Blomquist CL, Thomas SL et al (2006) Phytophthora foliorum sp nov., a new species causing leaf blight of azalea. Mycol Res 110:1309–1322. doi:10.1016/j.mycres.2006.07.017 PubMedCrossRefGoogle Scholar
  24. Duran A, Gryzenhout M, Slippers B et al (2008) Phytophthora pinifolia sp nov associated with a serious needle disease of Pinus radiata in Chile. Plant Pathol 57:715–727. doi:10.1111/j.1365-3059.2008.01893.x
  25. Eckert A, Bower A, Wegrzyn J et al (2009) Asssociation genetics of coastal Douglas-fir (Pseudotsuga menziesu var. menziesii, Pinaceae). I. cold-hardiness related traits. Genetics 182:1289–1302. doi:10.1534/genetics.108.102350 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15. doi:10.1038/hdy.2010.152 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ellison A, Bank M, Clinton B et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486CrossRefGoogle Scholar
  28. Ersoz ES, Wright MH, González-Martínez SC et al (2010) Evolution of disease response genes in Loblolly Pine: insights from candidate genes. PLoS ONE 5:e14234. doi:10.1371/journal.pone.0014234 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS, St. PaulGoogle Scholar
  30. Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249. doi:10.1104/pp. 107.108712 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Garbelotto M, Harnik T, Schmidt D (2009) Efficacy of phosphonic acid, metalaxyl-M and copper hydroxide against Phytophthora ramorum in vitro and in planta. Plant Pathol 58:111–119. doi:10.1111/j.1365-3059.2008.01894.x CrossRefGoogle Scholar
  32. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotech 29:644–652. doi:10.1038/nbt.1883 CrossRefGoogle Scholar
  33. Haas BJ, Kamoun S, Zody MC et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398. doi:10.1038/nature08358 PubMedCrossRefGoogle Scholar
  34. Hansen E, Reeser P, Davidson J et al (2003) Phytophthora nemorosa, a new species causing cankers and leaf blight of forest trees in California and Oregon, USA. Mycotaxon 88:129–138Google Scholar
  35. Hansen E, Kanaskie A, Prospero S et al (2008) Epidemiology of Phytophthora ramorum in Oregon tanoak forests. Can J Forest Res 38:1133–1143. doi:10.1139/X07-217 CrossRefGoogle Scholar
  36. Hansen K, Brenner S, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38:1–7. doi:10.1093/nar/gkq224 CrossRefGoogle Scholar
  37. Hardham AR, Cahill DM (2010) The role of oomycete effectors in plant–pathogen interactions. Funct Plant Biol 37:919–925. doi:10.1071/FP10073 CrossRefGoogle Scholar
  38. Hayden K, Ivors K, Wilkinson C, Garbelotto M (2006) TaqMan chemistry for Phytophthora ramorum detection and quantification, with a comparison of diagnostic methods. Phytopathology 96:846–854. doi:10.1094/PHYTO-96-0846 PubMedCrossRefGoogle Scholar
  39. Hayden KJ, Nettel A, Dodd RS, Garbelotto M (2011) Will all the trees fall? Variable resistance to an introduced forest disease in a highly susceptible host. For Ecol Manage 261:1781–1791. doi:10.1016/j.foreco.2011.01.042 CrossRefGoogle Scholar
  40. Hayden KJ, Garbelotto M, Dodd R, Wright JW (2013) Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease. Evol App. doi:10.1111/eva.12080
  41. Hein I, Gilroy E, Armstrong M, Birch P (2009) The zig-zag-zig in oomycete-plant interactions. Mol Plant Pathol 10:547–562PubMedCrossRefGoogle Scholar
  42. Hüberli D, Garbelotto M (2011) Phytophthora ramorum is a generalist plant pathogen with differences in virulence between isolates from infectious and dead‐end hosts. Forest Pathol 42:8–13. doi:10.1111/j.1439-0329.2011.00715.x CrossRefGoogle Scholar
  43. Isakov O, Modai S, Shomron N (2011) Pathogen detection using short-RNA deep sequencing subtraction and assembly. Bioinformatics 27:2027–2030. doi:10.1093/bioinformatics/btr349 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ivors K, Garbelotto M, Vries I et al (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology 15:1493–1505. doi:10.1111/j.1365-294X.2006.02864.x PubMedCrossRefGoogle Scholar
  45. Jiang R, Govers F (2006) Nonneutral GC3 and retroelement codon mimicry in Phytophthora. J Mol Evol 63:458–472. doi:10.1007/s00239-005-0211-3 PubMedCrossRefGoogle Scholar
  46. Jiang RHY, Tyler BM, Whisson SC et al (2006) Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol Biol Evol 23:338–351. doi:10.1093/molbev/msj039 PubMedCrossRefGoogle Scholar
  47. Jiang R, Tripathy S, Govers F, Tyler B (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 105:4874–4879. doi:10.1073/pnas.0709303105 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kamoun S (2003) Molecular genetics of pathogenic Oomycetes. Eukaryotic Cell 2:191–199. doi:10.1128/EC.2.2.191-199.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic Oomycetes. Annu Rev Phytopathol 44:41–60. doi:10.1146/annurev.phyto.44.070505.143436 PubMedCrossRefGoogle Scholar
  50. Kasuga T, Kozanitas M, Bui M et al (2012) Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum. PLoS ONE 7:e34728. doi:10.1371/journal.pone.0034728 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kawahara Y, Oono Y, Kanamori H et al (2012) Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS ONE 7:e49423. doi:10.1371/journal.pone.0049423 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Kleemann J, Rincon-Rivera LJ, Takahara H et al (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Collectrotrichum higginsianum. PLoS Pathog 8:e1002643. doi:10.1371/journal.ppat.1002643 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Kurz WA, Stinson G, Rampley GJ et al (2008) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci U S A 105:1551–1555. doi:10.1073/pnas.0708133105 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Lamsal S, Cobb RC, Hall Cushman J et al (2011) Spatial estimation of the density and carbon content of host populations for Phytophthora ramorum in California and Oregon. For Ecol Manage 262:989–998. doi:10.1016/j.foreco.2011.05.033 CrossRefGoogle Scholar
  55. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Lee S-J, Rose JK (2010) Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav 5:769–772Google Scholar
  57. Le Provost G, Herrera R, Paiva J et al (2007) A micromethod for high throughput RNA extraction in forest trees. Biol Res 40:291–297PubMedCrossRefGoogle Scholar
  58. Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2011) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8:113–126. doi:10.1007/s11295-011-0426-y CrossRefGoogle Scholar
  59. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Li R, Gao S, Hernandez AG et al (2012) Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS One. doi:10.1371/journal.pone.0037127 Google Scholar
  61. Loo J (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol Invasions 11:81–96. doi:10.1007/s10530-008-9321-3 CrossRefGoogle Scholar
  62. Manos P, Cannon C, Oh S (2009) Phylogenetic relationships and taxonomic status of the paleoendemic fagaceae of Western North America: recognition of a new genus, Notholithocarpus. Madrono 55:181–190CrossRefGoogle Scholar
  63. Manter DK, Kelsey RG, Karchesy JJ (2007) Photosynthetic declines in Phytophthora ramorum-infected plants develop prior to water stress and in response to exogenous application of elicitins. Phytopathology 97:850–856. doi:10.1094/PHYTO-97-7-0850 PubMedCrossRefGoogle Scholar
  64. Mascheretti S, Croucher P, Vettraino A et al (2008) Reconstruction of the Sudden Oak Death epidemic in California through microsatellite analysis of the pathogen Phytophthora ramorum. Mol Ecol 17:2755–2768. doi:10.1111/j.1365-294X.2008.03773.x PubMedCrossRefGoogle Scholar
  65. Matsumura H, Reich S, Ito A et al (2003) Gene expression analysis of plant host–pathogen interactions by SuperSAGE. Proc Natl Acad Sci U S A 100:15718–15723. doi:10.1073/pnas.2536670100 PubMedCentralPubMedCrossRefGoogle Scholar
  66. McPherson B, Mori S, Wood D et al (2010) Responses of oaks and tanoaks to the sudden oak death pathogen after 8y of monitoring in two coastal California forests. Ecol Manage 259:2248–2255. doi:10.1016/j.foreco.2010.02.020 CrossRefGoogle Scholar
  67. Meyers KJ, Swiecki TJ, Mitchell AE (2006) Understanding the native Californian diet: identification of condensed and hydrolyzable tannins in tanoak acorns (Lithocarpus densiflorus). J Agric Food Chem 54:7686–7691. doi:10.1021/jf061264t PubMedCrossRefGoogle Scholar
  68. Moralejo E, Descals E (2011) Diplanetism and microcyclic sporulation in Phytophthora ramorum. Forest Pathol 41:349–354. doi:10.1111/j.1439-0329.2010.00674.x CrossRefGoogle Scholar
  69. Mortazavi A, Williams B, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. doi:10.1038/nmeth.1226 PubMedCrossRefGoogle Scholar
  70. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122. doi:10.1038/nrg2931 PubMedCrossRefGoogle Scholar
  71. Norelli J, Farrell R, Bassett C et al (2009) Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genet Genomes 5:27–40. doi:10.1007/s11295-008-0164-y CrossRefGoogle Scholar
  72. Orłowska E, Fiil A, Kirk H-G et al (2011) Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell Rep 31:187–203. doi:10.1007/s00299-011-1155-2 PubMedCrossRefGoogle Scholar
  73. Orshinsky AM, Hu J, Opiyo SO et al (2012) RNA-seq analysis of the Sclerotinia homoeocarpa—creeping bentgrass pathosystem. PLoS ONE 7:e41150. doi:10.1371/journal.pone.0041150 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Oshlack A, Wakefield MJ (2009) Transcript length bias in RNA-seq data confounds systems biology. Biol Direct 4:14. doi:10.1186/1745-6150-4-14 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Pachter L (2011) Models for transcript quantification from RNA-Seq. arXiv.org arXiv:1104.3889v2 [q-bio.GN].Google Scholar
  76. Parchman TL, Geist KS, Grahnen JA et al (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180. doi:10.1186/1471-2164-11-180 PubMedCentralPubMedCrossRefGoogle Scholar
  77. Parke J, Oh E, Voelker S et al (2007) Phytophthora ramorum colonizes tanoak xylem and is associated with reduced stem water transport. Phytopathology 97:1558–1567. doi:10.1094/PHYTO-97-12-1558 PubMedCrossRefGoogle Scholar
  78. Petre B, Morin E, Tisserant E et al (2012) RNA-seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter. PLoS ONE 7:e44408. doi:10.1371/journal.pone.0044408 PubMedCentralPubMedCrossRefGoogle Scholar
  79. Ramage BS, O’Hara KL, Forrestel AB (2011) Forest transformation resulting from an exotic pathogen: regeneration and tanoak mortality in coast redwood stands affected by sudden oak death. Can J Forest Res 41:763–772. doi:10.1139/x11-020 CrossRefGoogle Scholar
  80. Rampant PF, Lesur I, Boussardon C et al (2011) Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. BMC Genomics 12:292. doi:10.1186/1471-2164-12-292 CrossRefGoogle Scholar
  81. Reeser PW, Hansen EM, Sutton W (2007) Phytophthora siskiyouensis, a new species from soil, water, myrtlewood (Umbellularia californica) and tanoak (Lithocarpus densiflorus) in southwestern Oregon. Mycologia 99:639–643. doi:10.3852/mycologia.99.5.639 PubMedCrossRefGoogle Scholar
  82. Risso D, Schwartz K, Sherlock G, Dudoit S (2011) GC-Content normalization for RNA-seq data. BMC Bioinformatics 12:480. doi:10.1186/1471-2105-12-480
  83. Rizzo D, Garbelotto M, Davidson J et al (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis 86:205–214CrossRefGoogle Scholar
  84. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Meth 10:71–73. doi:10.1038/nmeth.2251
  85. Robertson G, Schein J, Chiu R et al (2010) De novo assembly and analysis of RNA-seq data. Nat Methods 7:909–912. doi:10.1038/nmeth.1517 PubMedCrossRefGoogle Scholar
  86. Sanseverino W, Roma G, De Simone M et al (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38:D814–D821. doi:10.1093/nar/gkp978 PubMedCentralPubMedCrossRefGoogle Scholar
  87. Scott PM, Burgess TI, Barber PA et al (2009) Phytophthora multivora sp nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia. Persoonia 22:1–13. doi:10.3767/003158509X415450 PubMedCentralPubMedCrossRefGoogle Scholar
  88. Seidl MF, Van den Ackerveken G, Govers F, Snel B (2011) A domain-centric analysis of Oomycete plant pathogen genomes reveals unique protein organization. Plant Physiol 155:628–644. doi:10.1104/pp. 110.167841 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Shen D, Ye W, Dong S, Wang Y, Dou D (2011) Characterization of intronic structures and alternative splicing in Phytophthora sojae by comparative analysis of expressed sequence tags and genomic sequences. Can J Microbiol 57:84–90. doi:10.1139/W10-103 PubMedCrossRefGoogle Scholar
  90. Sierra R, Rodriguez-R LM, Chaves D et al (2010) Discovery of Phytophthora infestans genes expressed in planta through mining of cDNA libraries. PLOS ONE 5(3):e9847. doi:10.1371/journal.pone.0009847 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Stamm E, Parke J (2013) The effect of Phytophthora ramorum on the physiology and xylem function of young tanoak trees. Proceedings of the Fifth Sudden Oak Death Science Symposium, June 19–22, 2012, Petaluma, CA, USA GTR PSWXXXGoogle Scholar
  92. Tooley P, Kyde K, Englander L (2004) Susceptibility of selected ericaceous ornamental host species to Phytophthora ramorum. Plant Dis 88:993–999CrossRefGoogle Scholar
  93. Tooley P, Browning M, Kyde K, Berner D (2009) Effect of temperature and moisture period on infection of Rhododendron “Cunningham’s White” by Phytophthora ramorum. Phytopathology 99:1045–1052. doi:10.1094/PHYTO-99-9-1045 PubMedCrossRefGoogle Scholar
  94. Trapnell C, Pachter L, Salzberg S (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. doi:10.1093/bioinformatics/btp120 PubMedCentralPubMedCrossRefGoogle Scholar
  95. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. doi:10.1038/nbt.1621 PubMedCentralPubMedCrossRefGoogle Scholar
  96. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols 7:562–578. doi:10.1038/nprot.2012.016 CrossRefGoogle Scholar
  97. Tyler B, Tripathy S, Zhang X et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266. doi:10.1126/science.1128796 PubMedCrossRefGoogle Scholar
  98. Ueno S, Provost GL, Léger V, et al (2010) Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 11:650. doi:10.1186/1471-2164-11-650
  99. Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97. doi:10.1006/pmpp.1999.0213 CrossRefGoogle Scholar
  100. Waring K, O’Hara K (2008) Redwood/tanoak stand development and response to tanoak mortality caused by Phytophthora ramorum. Ecol Manage 255:2650–2658. doi:10.1016/j.foreco.2008.01.025 CrossRefGoogle Scholar
  101. Weber G, Shendure J, Tanenbaum DM et al (2002) Identification of foreign gene sequences by transcript filtering against the human genome. Nat Genet 30:141–142. doi:10.1038/ng818 PubMedGoogle Scholar
  102. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Micro 10:618–630. doi:10.1038/nrmicro2852 CrossRefGoogle Scholar
  103. Wheeler N, Sederoff R (2009) Role of genomics in the potential restoration of the American chestnut. Tree Genet Genomes 5:181–187. doi:10.1007/s11295-008-0180-y CrossRefGoogle Scholar
  104. Win J, Krasileva KV, Kamoun S et al (2012) Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic Oomycete species. PLoS Pathog 8:e1002400. doi:10.1371/journal.ppat.1002400 PubMedCentralPubMedCrossRefGoogle Scholar
  105. Winnenburg R, Baldwin TK, Urban M et al (2006) PHI-base: a new database for pathogen host interactions. Nucleic Acids Res 34:D459–D464. doi:10.1093/nar/gkj047 PubMedCentralPubMedCrossRefGoogle Scholar
  106. Xu Y, Stange-Thomann N, Weber G et al (2003) Pathogen discovery from human tissue by sequence-based computational subtraction. Genomics 81:329–335. doi:10.1016/S0888-7543(02)00043-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Authors and Affiliations

  • Katherine J. Hayden
    • 1
    • 5
    • 6
  • Matteo Garbelotto
    • 1
  • Brian J. Knaus
    • 2
  • Richard C. Cronn
    • 2
  • Hardeep Rai
    • 3
  • Jessica W. Wright
    • 4
  1. 1.Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  2. 2.Pacific Northwest Research StationUSDA-Forest ServiceCorvallisUSA
  3. 3.Utah State UniversityLoganUSA
  4. 4.Pacific Southwest Research StationUSDA-Forest ServiceDavisUSA
  5. 5.Interactions Arbres-Microorganismes, UMR1136Université de LorraineVandoeuvre-lès-NancyFrance
  6. 6.Interactions Arbres-Microorganismes, UMR1136INRAChampenouxFrance

Personalised recommendations