Tree Genetics & Genomes

, Volume 10, Issue 2, pp 399–409 | Cite as

Structural organization, classification and phylogenetic relationship of cytochrome P450 genes in Citrus clementina and Citrus sinensis

  • Suresh Reddy Mittapelli
  • Shailendar Kumar Maryada
  • Venkateswara Rao Khareedu
  • Dashavantha Reddy Vudem
Original Paper


The genus Citrus is an important fruit crop and nutritional source for the good health of humans. Cytochrome P450s represent about 1 % of the proteome and mediate diverse biochemical reactions pertaining to both primary and secondary metabolism. Analysis of Citrus genomic resources identified 296 plant cytochrome P450s (CYP) coding genes in Citrus clementina, 272 in double haploid (dh) Citrus sinensis, and 202 in C. sinensis. In C. clementina and dh C. sinensis, CYP genes are distributed into nine clans. In the three genomes, single intron containing CYP genes are predominant in the A-type families. Among non-A-type CYP families, multiple intron containing genes are predominant. More number of genes in CYP A-type families over non-A-type families is attributed to rapid evolution of A-type genes facilitated by their gene organization. Further, complex gene organization of non-A-type genes with the presence of multiple introns might have contributed to the slower evolvement of paralogs. Majority of introns (1,660) from three genomes showed canonical GT-AG splice sites. However, 33 introns showed non-conventional GC… PyAG splice sites and functionality of these splice sites is confirmed by the ESTs lacking this intron. Across the families, gene organization is conserved between the three genomes. In dh C. sinensis, 22 genes were identified to have alternate splicing. Examination of scaffolds in C. clementina revealed that majority of the Citrus CYP genes are solitary and a few of them are in clusters of 3–8 genes. PCR amplification of C. sinensis genomic DNA with gene-specific primers failed to amplify out-grouped genes Ccl-CYP706A16 and Ccl-CYP706B1, confirming that they are specific to C. clementina. Differential number of CYP genes observed between C. clementina and C. sinensis is attributed to the extent of variability between their parents representing ancestral taxa.


Citrus clementina Citrus sinensis Cytochrome P450 Gene amplification Gene families Intron phasing 



We gratefully acknowledge Prof. T. Papi Reddy, Former Head, Department of Genetics, Osmania University for critical reading of the manuscript. Thanks are due to Dr. P. R. Babu, Research Associate, Centre for Plant Molecular Biology, Osmania University for his kind help.

Data archiving

Accession numbers of all the CYPs reported in the study are provided in Table S1, Table S2, and Table S3 and can be retrieved from

Supplementary material

11295_2013_695_MOESM1_ESM.docx (46 kb)
ESM 1 (DOCX 46 kb)
11295_2013_695_MOESM2_ESM.docx (71 kb)
ESM 2 (DOCX 71 kb)
11295_2013_695_MOESM3_ESM.docx (70 kb)
ESM 3 (DOCX 70 kb)
11295_2013_695_MOESM4_ESM.docx (44 kb)
ESM 4 (DOCX 43 kb)


  1. Babu PR, Rao KV, Reddy VD (2013) Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 513:156–162PubMedCrossRefGoogle Scholar
  2. Bar-Peled M, Lewinsohn E, Fluhr R, Gressel J (1991) UDP-rhamnose:flavanone-7-O-glucoside-2-O-rhamnosyltransferase. Purification and characterization of an enzyme catalyzing the production of bitter compounds in citrus. J Biol Chem 266(31):20953–20959PubMedGoogle Scholar
  3. Britsch L (1990) Purification and characterization of flavone synthase I, a 2-oxoglutarate-dependent desaturase. Arch Biochem Biophys 282(1):152–160PubMedCrossRefGoogle Scholar
  4. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCentralPubMedCrossRefGoogle Scholar
  5. Garcia-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Genet Genomics 287(1):77–94PubMedCrossRefGoogle Scholar
  6. Gmitter FG, Chen C, Machado MA, de Souza AA, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus genomics. Tree Genetics & Genomes 8:611–626CrossRefGoogle Scholar
  7. Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQC, Pandey S, Xu D, Yu O (2010) Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases. BMC Plant Biol 10:243PubMedCentralPubMedCrossRefGoogle Scholar
  8. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235PubMedCrossRefGoogle Scholar
  9. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664PubMedCentralPubMedCrossRefGoogle Scholar
  10. Krug CA (1943) Chromosome numbers in the subfamily Arantioideae, with special reference in the genus Citrus. Citrus Bot Gaz 104:602–611CrossRefGoogle Scholar
  11. Kumar MS, Babu PR, Rao KV, Reddy VD (2013) Organization and classification of cytochrome P450 genes in Castor (Ricinus communis L.). Proc Natl Acad Sci, India, Sect B Biol Sci. doi: 10.1007/s40011-013-0192–8 Google Scholar
  12. Liu Y, Heying E, Sherry A, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of citrus fruits. Comprehensive Reviews in Food Science and Food Safety 11:530–545CrossRefGoogle Scholar
  13. Malik SK, Rohini MR, Kumar S, Choudhary R, Pal D, Chaudhury R (2012) Assessment of genetic diversity in Sweet Orange [Citrus sinensis (L.) Osbeck] cultivars of India using morphological and RAPD markers. Agric Res 1(4):317–324CrossRefGoogle Scholar
  14. Martens S, Forkmann G, Matern U, Lukacin R (2001) Cloning of parsley flavone synthase I. Phytochemistry 58(1):43–46PubMedCrossRefGoogle Scholar
  15. Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137PubMedCrossRefGoogle Scholar
  16. Nelson DR (2006) Plant cytochrome P450s from moss to poplar. Phytochem Rev 5:193–204CrossRefGoogle Scholar
  17. Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211PubMedCrossRefGoogle Scholar
  18. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of Oryza sativa and Arabidopsis thaliana. Analysis of 727 Cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772PubMedCentralPubMedCrossRefGoogle Scholar
  19. Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Bérard A, Chauveau A, Cuenca J, Costantino G, Kacar Y, Mu L, Garcia-Lor A, Froelicher Y, Aleza P, Boland A, Billot C, Navarro L, Luro F, Roose ML, Gmitter FG, Talon M, Brunel D (2012) A reference genetic map of C. clementina hort. exTan. citrus evolution inferences from comparative mapping. BMC Genomics 13:593PubMedCentralPubMedCrossRefGoogle Scholar
  20. Phytozome (2011) Haploid Clementine Genome, International Citrus Genome Consortium,,
  21. Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667PubMedCrossRefGoogle Scholar
  22. Scora RW (1975) On the history and origin of Citrus. Bull Torrey Bot Club 102:369–375CrossRefGoogle Scholar
  23. Smigocki AC, Wilson D (2004) Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2. Biotechnol Lett 26:1809–1814PubMedCrossRefGoogle Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralPubMedCrossRefGoogle Scholar
  25. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Denis B, Wen-Biao J, Bao-Hai H, Lyon MP et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Suresh Reddy Mittapelli
    • 1
  • Shailendar Kumar Maryada
    • 1
  • Venkateswara Rao Khareedu
    • 1
  • Dashavantha Reddy Vudem
    • 1
  1. 1.Centre for Plant Molecular BiologyOsmania UniversityHyderabadIndia

Personalised recommendations