Tree Genetics & Genomes

, Volume 10, Issue 2, pp 355–366 | Cite as

Temperature-dependent differential transcriptomes during formation of an epigenetic memory in Norway spruce embryogenesis

  • Igor A. Yakovlev
  • YeonKyeong Lee
  • Björn Rotter
  • Jorunn E. Olsen
  • Tore Skrøppa
  • Øystein Johnsen
  • Carl Gunnar Fossdal
Original Paper

Abstract

Embryogenesis is the initial stage of plant life, when the basics of body plan and the post-embryonic development are laid down. Epigenetic memory formed in the Norway spruce embryos permanently affect the timing of bud burst and bud set in progenies, vitally important adaptive traits in this long-lived forest species. The epigenetic memory marks are established in response to the temperature conditions prevailing during zygotic and somatic embryogenesis; the epitype is fixed by the time the embryo is fully developed and is mitotically propagated throughout the tree’s life span. Somatic embryogenesis closely mimics the natural zygotic embryo formation and results in epigenetically different plants in a predictable temperature-dependent manner with respect to altered phenology. Using Illumina-based Massive Analysis of cDNA Ends, the transcriptome changes were monitored in somatic embryos during morphogenesis stage under two different temperatures (18 vs. 30 °C). We found distinct differences in transcriptomes between the genetically identical embryogenic tissues grown under the two epitype-inducing temperatures suggesting temperature-dependent canalizing of gene expression during embryo formation, putatively based on chromatin modifications. From 448 transcripts of genes coding for proteins involved in epigenetic machinery, we found 35 of these to be differentially expressed at high level under the epitype-inducing conditions. Therefore, temperature conditions during embryogenesis significantly alter transcriptional profiles including numerous orthologs of transcriptional regulators, epigenetic-related genes, and large sets of unknown and uncharacterized transcripts.

Keywords

Conifers Picea abies Epigenetic memory Transcriptome Next-generation (high-throughput) sequencing Embryogenesis 

Abbreviations

MACE

Massive Analysis of cDNA Ends

DE

Differentially expressed

CE

“Cold” embryogenesis environment (18 °C or C in libraries definitions)

WE

“Warm” embryogenesis environment (30 °C or W in libraries definitions)

RT-PCR

Real-time reverse transcription polymerase chain reaction

Notes

Acknowledgments

The authors would like to thank Tone I. Melby (Norwegian University of Life Sciences) for assistance in RNA extraction and Anne E. Nilsen (Norwegian Forest and Landscape Institute) for valuable help during in vitro culturing. In addition, we would like to thank Ruth Jüngling and Nico Krezdorn (GenXPro GmbH) for conducting the sequencing and the initial bioinformatics processing of data. We express additional gratitude to Damien Vaisettes (Institut National Des Sciences Appliquees, France) for valuable technical help with primer testing and running qRT-PCRs. This work was supported by the Norwegian Research Council (FRIBIO Grant #191455/V40) and the EU FP7 project ProCoGen.

Data Archiving Statement

Unique transcripts from four libraries using Illumina-based MACE analysis were deposited to the SRA (Short Read Archive, NCBI) and got the following accession: PRJNA184229 and ID: 184229.

Supplementary material

11295_2013_691_MOESM1_ESM.pdf (209 kb)
ESM 1 (PDF 209 kb)
11295_2013_691_MOESM2_ESM.docx (26 kb)
ESM 2 (DOCX 26 kb)
11295_2013_691_MOESM3_ESM.xlsx (459 kb)
ESM 3 (XLSX 459 kb)
11295_2013_691_MOESM4_ESM.xlsx (56 kb)
ESM 4 (XLSX 55 kb)
11295_2013_691_MOESM5_ESM.xlsx (124 kb)
ESM 5 (XLSX 124 kb)
11295_2013_691_MOESM6_ESM.docx (16 kb)
ESM 6 (DOCX 15 kb)

References

  1. Ahmad A, Zhang Y, Cao X-F (2010) Decoding the epigenetic language of plant development. Mol Plant 3(4):719–728PubMedCentralPubMedCrossRefGoogle Scholar
  2. Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476(7358):105–108PubMedCrossRefGoogle Scholar
  3. Audic S, Claverie J-M (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995PubMedGoogle Scholar
  4. Besnard G, Acheré V, Jeandroz S, Johnsen Ø, Rampant PF, Baumann R, Müller-Starck G, Skrøppa T, Favre J-M (2008) Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies? Ann Forest Sci 65(1):109CrossRefGoogle Scholar
  5. Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5(8):995–998PubMedCentralPubMedCrossRefGoogle Scholar
  6. Butenko Y, Ohad N (2011) Polycomb-group mediated epigenetic mechanisms through plant evolution. Biochim Biophys Acta 1809(8):395–406PubMedCrossRefGoogle Scholar
  7. Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176(3):511–536PubMedCrossRefGoogle Scholar
  8. Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Diff 52(6):555–566CrossRefGoogle Scholar
  9. Consortium GO (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(suppl 1):D258–D261CrossRefGoogle Scholar
  10. Dormling I, Johnsen Ø (1992) Effects of the parental environment on full-sib families of Pinus sylvestris. Can J For Res 22(1):88–100CrossRefGoogle Scholar
  11. Eveland AL, McCarty DR, Koch KE (2008) Transcript profiling by 3′-untranslated region sequencing resolves expression of gene families. Plant Physiol 146(1):32–44PubMedCentralPubMedCrossRefGoogle Scholar
  12. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Gen 13(2):97–109Google Scholar
  13. Greenwood MS, Hutchison KW (1996) Genetic aftereffects of increased temperature in Larix. In: Hom J, Birdsey R, O’Brian K (eds) Proceedings of the 1995 Meeting of the Northern Global Change Program, vol 214. USDA Forest Service Report, Radnor, pp 56–62Google Scholar
  14. Grimanelli D, Roudier F (2013) Epigenetics and development in plants: green light to convergent innovations. In: Edith H (ed) Current topics in developmental biology, vol 104. Academic, New York, pp 189–222Google Scholar
  15. Gupta PK, Durzan DZ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179PubMedCrossRefGoogle Scholar
  16. He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62(1):411–435PubMedCrossRefGoogle Scholar
  17. Heo JB, Sung S (2011) Encoding memory of winter by noncoding RNAs. Epigenetics 6(5):544–547PubMedCrossRefGoogle Scholar
  18. Huang H-R, Yan P-C, Lascoux M, Ge X-J (2012) Flowering time and transcriptome variation in Capsella bursa-pastoris (Brassicaceae). New Phytol 194:676–689PubMedCrossRefGoogle Scholar
  19. Huff JT, Zilberman D (2012) Regulation of biological accuracy, precision, and memory by plant chromatin organization. Curr Opin Genet Dev 22(2):132–138PubMedCrossRefGoogle Scholar
  20. Johnsen Ø, Daehlen OG, Østreng G, Skrøppa T (2005a) Daylength and temperature during seed production interactively affect adaptive performance of Picea abies progenies. New Phytol 168(3):589–596PubMedCrossRefGoogle Scholar
  21. Johnsen Ø, Fossdal CG, Nagy N, Molmann J, Dælen OG, Skrøppa T (2005b) Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ 28(9):1090–1102CrossRefGoogle Scholar
  22. Johnsen Ø, Kvaalen H, Yakovlev IA, Dæhlen OG, Fossdal CG, Skrøppa T (2009) An epigenetic memory from time of embryo development affects climatic adaptation in Norway spruce. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness. From the laboratory to the field. CABI, Wallingford, pp 99–107CrossRefGoogle Scholar
  23. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43(2):179–188PubMedCrossRefGoogle Scholar
  24. Kelly L, Leitch I (2011) Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res 19(7):939–953PubMedCrossRefGoogle Scholar
  25. Kim SY, Zhu T, Sung ZR (2010) Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis. Plant Physiol 152(2):516–528PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kvaalen H, Johnsen O (2008) Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol 177(1):49–59PubMedGoogle Scholar
  27. Kvaalen H, Daehlen OG, Rognstad AT, Grønstad B, Egertsdotter U (2005) Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res 35:1053–1060CrossRefGoogle Scholar
  28. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12(2):107–118PubMedCentralPubMedCrossRefGoogle Scholar
  29. Matsumura H, Yoshida K, Luo S, Kimura E, Fujibe T, Albertyn Z, Barrero RA, Krüger DH, Kahl G, Schroth GP, Terauchi R (2010) High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS ONE 5(8):e12010PubMedCentralPubMedCrossRefGoogle Scholar
  30. Matzke M, Mittelsten Scheid O (2006) Epigenetic regulation in plants. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, New York, pp 167–189Google Scholar
  31. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46PubMedCrossRefGoogle Scholar
  32. Nicol-Benoît F, Le-Goff P, Le-Dréan Y, Demay F, Pakdel F, Flouriot G, Michel D (2012) Epigenetic memories: structural marks or active circuits? Cell Mol Life Sci 69(13):2189–2203PubMedCrossRefGoogle Scholar
  33. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theiszen G, Tuominen H, Vanneste K, Wu Z-Q, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Lee Thompson S, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584PubMedCrossRefGoogle Scholar
  34. Olsen J (2010) Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol 73(1):37–47PubMedCrossRefGoogle Scholar
  35. Rohde A, Ruttink T, Hostyn V, Sterck L, Van Driessche K, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58(15–16):4047–4060PubMedCrossRefGoogle Scholar
  36. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Methods in molecular biology, vol 132, Bioinformatics methods and protocols. Humana, Totowa, pp 365–386Google Scholar
  37. Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8):2370–2390PubMedCentralPubMedCrossRefGoogle Scholar
  38. Satake A, Iwasa Y (2012) A stochastic model of chromatin modification: cell population coding of winter memory in plants. J Theor Biol 302:6–17PubMedCrossRefGoogle Scholar
  39. Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19(6):527–536PubMedCrossRefGoogle Scholar
  40. Schmidtling RC, Hipkins V (2004) The after-effects of reproductive environment in shortleaf pine. Forestry 77(4):287–295CrossRefGoogle Scholar
  41. Schmitz RJ, Zhang X (2011) High-throughput approaches for plant epigenomic studies. Curr Opin Plant Biol 14(2):130–136PubMedCentralPubMedCrossRefGoogle Scholar
  42. Seffer I, Nemeth Z, Hoffmann G, Matics R, Seffer AG, Koller A (2013) Unexplored potentials of epigenetic mechanisms of plants and animals—theoretical considerations. Genet Epigenetics 5:23–41Google Scholar
  43. Skrøppa T, Kohmann K, Johnsen Ø, Steffenrem A, Edvardsen ØM (2007) Field performance and early test results of offspring from two Norway spruce seed orchards containing clones transferred to warmer climates. Can J For Res 37(3):515–522CrossRefGoogle Scholar
  44. Stasolla C, Bozhkov PV, Chu T-M, van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, Von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24(10):1073–1085PubMedCrossRefGoogle Scholar
  45. Stoehr MU, L’Hirondelle SJ, Binder WD, Webber JE (1998) Parental environment aftereffects on germination, growth, and adaptive traits in selected spruce families. Can J For Res 28:418–426CrossRefGoogle Scholar
  46. Su P-H, Li H-m (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146(3):1231–1241Google Scholar
  47. Thellier M, Lüttge U (2013) Plant memory: a tentative model. Plant Biol 15(1):1–12PubMedCrossRefGoogle Scholar
  48. Torres TT, Metta M, Ottenwälder B, Schlötterer C (2008) Gene expression profiling by massively parallel sequencing. Genome Res 18(1):172–177PubMedCentralPubMedCrossRefGoogle Scholar
  49. Uddenberg D, Valladares S, Abrahamsson M, Sundström J, Sundås-Larsson A, Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234(3):527–539PubMedCentralPubMedCrossRefGoogle Scholar
  50. Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta 1809(8):360–368PubMedCrossRefGoogle Scholar
  51. Vega-Bartol J, Santos R, Simões M, Miguel C (2013) Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies. Plant Cell Rep 32(5):715–729PubMedCrossRefGoogle Scholar
  52. Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, Sv A (2011) Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genom 7(2):347–362CrossRefGoogle Scholar
  53. Wang Q-M, Wang L (2012) An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Rep 31:1535–1547Google Scholar
  54. Webber J, Ott P, Owens J, Binder W (2005) Elevated temperature during reproductive development affects cone traits and progeny performance in Picea glaucaengelmannii complex. Tree Physiol 25:1219–1227PubMedCrossRefGoogle Scholar
  55. Wiweger M, Farbos I, Ingouff M, Lagercrantz U, von Arnold S (2003) Expression of Chia4‐Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. J Exp Bot 54(393):2691–2699PubMedCrossRefGoogle Scholar
  56. Yakovlev I, Fossdal CG, Skrøppa T, Olsen JE, Jahren AH, Johnsen Ø (2012) An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci Res 22(02):63–76CrossRefGoogle Scholar
  57. Yakovlev IA, Asante DKA, Fossdal CG, Junttila O, Johnsen Ø (2011) Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci 180(1):132–139PubMedCrossRefGoogle Scholar
  58. Yakovlev IA, Fossdal CG, Johnsen Ø (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187(4):1154–1169PubMedCrossRefGoogle Scholar
  59. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Igor A. Yakovlev
    • 1
  • YeonKyeong Lee
    • 2
  • Björn Rotter
    • 3
  • Jorunn E. Olsen
    • 2
  • Tore Skrøppa
    • 1
  • Øystein Johnsen
    • 2
  • Carl Gunnar Fossdal
    • 1
  1. 1.Norwegian Forest and Landscape InstituteÅsNorway
  2. 2.Department of Plant and Environmental SciencesNorwegian University of Life SciencesÅsNorway
  3. 3.GenXPro GmbH, Frankfurter Innovationszentrum (FIZ)Frankfurt am MainGermany

Personalised recommendations