Advertisement

Tree Genetics & Genomes

, Volume 10, Issue 1, pp 141–155 | Cite as

Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers

  • Isabel TrujilloEmail author
  • Maria A. Ojeda
  • Nieves M. Urdiroz
  • Daniel Potter
  • Diego Barranco
  • Luis Rallo
  • Concepcion M. Diez
Original Paper

Abstract

Olive is one of the most ancient crop plants and the World Olive Germplasm Bank of Cordoba (WOGBC), Spain, is one of the world’s largest collections of olive germplasm. We used 33 SSR (Simple Sequence Repeats) markers and 11 morphological characteristics of the endocarp to characterise, identify and authenticate 824 trees, representing 499 accessions from 21 countries of origin, from the WOGBC collection. The SSR markers exhibited high variability and information content. Of 332 cultivars identified in this study based on unique combinations of SSR genotypes and endocarp morphologies, 200 were authenticated by genotypic and morphological markers matches with authentic control samples. We found 130 SSR genotypes that we considered as molecular variants because they showed minimal molecular differences but the same morphological profile than 48 catalogued cultivars. We reported 15 previously described and 37 new cases of synonyms as well as 26 previously described and seven new cases of homonyms. We detected several errors in accession labelling, which may have occurred at any step during establishment of plants in the collection. Nested sets of 5, 10 and 17 SSRs were proposed to progressively and efficiently identify all of the genotypes studied here. The study provides a useful protocol for the characterisation, identification and authentication of any olive germplasm bank that has facilitated the establishment of a repository of true-to-type cultivars at the WOGBC.

Keywords

Olea europaeaGenetic diversity Microsatellite Ex-situ conservation Clonal cultivars 

Notes

Acknowledgements

This work was financially supported by the projects RF01-006 and RF-2009-00011-00-00 (INIA, the Ministerio de Ciencia e Innovación of Spain) and Oleagen (Fundación Genoma España, Junta de Andalucía and Corporación Tecnológica de Andalucía). The research carried out by I. Trujillo was partially performed during a sabbatical leave at the University of California, Davis, which was funded by the Ministerio de Educación of Spain. Programa Salvador de Madariaga, No. Ref. PR-2009-0527. The authors are grateful to Dr. Juan M. Caballero and to the late Dr. Carmen Del Río, successive curators of the WOGBC, for facilitating us to carry out this work.

Supplementary material

11295_2013_671_MOESM1_ESM.xls (28 kb)
ESM 1 (XLS 27.5 kb)
11295_2013_671_MOESM2_ESM.xls (186 kb)
ESM 2 (XLS 186 kb)
11295_2013_671_MOESM3_ESM.xls (133 kb)
ESM 3 (XLS 133 kb)
11295_2013_671_MOESM4_ESM.doc (66 kb)
ESM 4 (DOC 66 kb)
11295_2013_671_MOESM5_ESM.xls (300 kb)
ESM 5 (XLS 300 kb)
11295_2013_671_MOESM6_ESM.doc (42 kb)
ESM 6 (DOC 42.5 kb)

References

  1. Badenes M, Garces A, Romero C, Romero M, Clave J, Rovira M, Llacer G (2003) Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet Resour Crop Evol 50:579–585CrossRefGoogle Scholar
  2. Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot 98:935–942PubMedCrossRefGoogle Scholar
  3. Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, Arcioni S, Vendramin GG, Buonamici A, Porceddu A, Sarri V, Ojeda MA, Trujillo I, Rallo L, Belaj A, Perri E, Salimonti A, Muzzalupo I, Casagrande A, Lain O, Messina R, Testolin R (2009) A consensus list of microsatellite markers for olive genotyping. Mol Breed 24:213–231CrossRefGoogle Scholar
  4. Banilas G, Minas J, Gregoriou C, Demoliou C, Kourti A, Hatzopoulos P (2003) Genetic diversity among accessions of an ancient olive variety of Cyprus. Genome 46:370–376PubMedCrossRefGoogle Scholar
  5. Barranco D, Rallo L (1984) Las variedades de olivo cultivadas en Andalucia. Ministerio de Agricultura, Junta de Andalucia, Madrid, SpainGoogle Scholar
  6. Barranco D, Cimato A, Fiorino P, Rallo L, Touzani A, Castañeda C, Serafini F, Trujillo I (2000a) World olive catalogue of olive varieties. International Olive Oil Council, Madrid, SpainGoogle Scholar
  7. Barranco D, Trujillo I, Rallo L (2000b) Are ‘Oblonga’ and ‘Frantoio’ the same cultivar? HortSci 35:1323–1325Google Scholar
  8. Barranco D, Trujillo I, Rallo L (2005) Elaiografía Hispanica. In: Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España. Mundi-Prensa, MadridGoogle Scholar
  9. Bartolini G, Petrucelli R (2002) Classification, origin, diffusion and history of the olive. FAO, RomeGoogle Scholar
  10. Bartolini G, Prevost G, Messeri C, Carignani C (2005) Olive germplasm: cultivars and world-wide collections. In: FAO SaPGRSo (ed) FAOGoogle Scholar
  11. Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644PubMedCrossRefGoogle Scholar
  12. Belaj A, Caballero JM, Barranco D, Rallo L, Trujillo I (2003a) Genetic characterization and identification of new accessions from Syria in an olive Germplasm Bank by means of RAPD markers. Euphytica 134:261–268CrossRefGoogle Scholar
  13. Belaj A, Satovic Z, Ismaili H, Panajoti D, Rallo L, Trujillo I (2003b) RAPD genetic diversity of albanian olive germplasm and its relationships with other mediterranean countries. Euphytica 130:387–395CrossRefGoogle Scholar
  14. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003c) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744PubMedCrossRefGoogle Scholar
  15. Belaj A, Munoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 100:449–458PubMedCrossRefGoogle Scholar
  16. Belaj A, Dominguez-García MC, Atienza SG, Martín Urdíroz N, De la Rosa R, Satovic Z, Martín A, Kilian A, Trujillo I, Valpuesta V, Del Río C (2012) Developing a core collection of olive (Olea europaea L) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378CrossRefGoogle Scholar
  17. Besnard G, Breton C, Baradat P, Khadari B, Bervillé A (2001) Cultivar identification in the olive (Olea europaea L.) based onRAPDS. J Am Soc Hortic Sci 126:668–675Google Scholar
  18. Besnard G, Khadari B, Navascués M, Fernández-Mazuecos M, El Bakkali A, Arrigo N, Baali-Cherif D, Brunini-Bronzini de Caraffa V, Santoni S, Vargas P, Savolainen V (2013) The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B Biol Sci 280(1756)Google Scholar
  19. Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedCentralPubMedGoogle Scholar
  20. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis viniferaL.). Genome 39(4):628–633PubMedCrossRefGoogle Scholar
  21. Bracci T, Sebastiani L, Busconi M, Fogher C, Belaj A, Trujillo I (2009) SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Sci Hortic 122:209–215CrossRefGoogle Scholar
  22. Caballero JM, del Rio C, Barranco D, Trujillo I (2006) The Olive World Germplasm Bank of Cordoba, Spain. Olea 25:14–19Google Scholar
  23. Cantini C, Cimato A, Autino A, Redi A, Cresti M (2008) Assessment of the Tuscan olive germplasm by microsatellite markers reveals genetic identities and different discrimination capacity among and within cultivars. J Am Soc Hortic Sci 133:598–604Google Scholar
  24. Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307PubMedCrossRefGoogle Scholar
  25. Charafi J, El Meziane A, Moukhli A, Boulouha B, El Modafar C, Khadari B (2008) Menara gardens: a Moroccan olive germplasm collection identified by a SSR locus-based genetic study. Genet Resour Crop Evol 55:893–900CrossRefGoogle Scholar
  26. Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228PubMedCrossRefGoogle Scholar
  27. Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping—art. no. 127. BMC Plant Biol 8:127–127PubMedCentralPubMedCrossRefGoogle Scholar
  28. Corrado G, La Mura M, Ambrosino O, Pugliano G, Varricchio P, Rao R (2009) Relationships of Campanian olive cultivars: comparative analysis of molecular and phenotypic data. Genome 52:692–700PubMedCrossRefGoogle Scholar
  29. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93(5):504–509PubMedCrossRefGoogle Scholar
  30. de la Rosa R, James C, Tobutt KR (2002) Isolation and characterization of polymorphic microsatellite in olive Olea europaea L. and their transferability to other genera in the Oleaceae. Mol Ecol Notes 2:265–267CrossRefGoogle Scholar
  31. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  32. Díez CM, Trujillo I, Barrio E, Belaj A, Barranco D, Rallo L (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807PubMedCrossRefGoogle Scholar
  33. Díez CM, Imperato A, Rallo L, Barranco D, Trujillo I (2012) Worldwide core collection of olive cultivars based on simple sequence repeat and morphological markers. Crop Sci 52:211–221CrossRefGoogle Scholar
  34. D’Imperio M, Viscosi V, Scarano MT, D’Andrea M, Zulo BA, Pilla F (2001) Integration between molecular and morphological markers for the exploitation of olivegermoplasm (Olea europaea). Sci Hortic 130:229–240CrossRefGoogle Scholar
  35. Downey G, Boussion J (1996) Authentication of coffee bean variety by near–infrared reflectance spectroscopy of dried extract. J Sci Food Agric 71(1):41–49CrossRefGoogle Scholar
  36. Erre P, Chessa I, Munoz-Diez C, Belaj A, Rallo L, Trujillo I (2010) Genetic diversity and relationships between wild and cultivated olives (Olea europaea L.) in Sardinia as assessed by SSR markers. Genet Resour Crop Evol 57:41–54CrossRefGoogle Scholar
  37. Evans KM, Patocchi A, Rezzonico F, Mathis F, Durel CE, Fernández-Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Gianfranceschi L, Komjanc M, Latuer M, Madduri M, Noordijk Y, Van de Weg WE (2011) Genotyping of pedigreed apple breeding meterial with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed 28:535–547CrossRefGoogle Scholar
  38. FAO (2008) The Statistical Database (FAOSTAT). Food and Agriculture Organization of the United Nations (FAO), RomeGoogle Scholar
  39. Fendri M, Trujillo I, Trigui A, Rodriguez-Garcia MI, Ramirez JDA (2010) Simple sequence repeat identification and endocarp characterization of olive tree accessions in a Tunisian germplasm collection. Hortscience 45:1429–1436Google Scholar
  40. Ganopoulos IV, Kazantzis K, Chatzicharisis I, Karayiannis I, Tsaftaris AS (2011) Genetic diversity, structure and fruit trait associations in Greek sweet cherry cultivars using microsatellite based (SSR/ISSR) and morpho-physiological markers. Euphytica 181:237–251CrossRefGoogle Scholar
  41. Garcia MG, Ontivero M, Diaz Ricci JC, Castagnaro A (2002) Morphological traits and high resolution RAPD markers for the identification of the main strawberry varieties cultivated in Argentina. Plant Breed 121:76–80CrossRefGoogle Scholar
  42. Garcia-Diaz A, Oya R, Sanchez A, Luque F (2003) Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy. Genome 46:377–381PubMedCrossRefGoogle Scholar
  43. Gil FS, Busconi M, Machado AD, Fogher C (2006) Development and characterization of microsatellite loci from Olea europaea. Mol Ecol Notes 6:1275–1277CrossRefGoogle Scholar
  44. González-Plaza JJ, Muñoz-Mérida A, Ortiz-Martín I, Domínguez-García MC, Martín-Urdíroz N, Diez-Muñoz C, Sánchez-Sevilla JL, Rallo L, Trujillo I, Belaj A, de la Rosa R, Trelles O, Valpuesta V, Beuzón CR (2011) Identification of molecular markers in olive tree for the analysis of agronomical traits. In: 4th International Conference for Olive Tree and Olive Products. OliveBioteq, Chania, GreciaGoogle Scholar
  45. Haouane H, El Bakkali A, Moukhli A, Tollon C, Santoni S, Oukabli A, El Modafar C, Khadari B (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources. Genetica, AmsterdamGoogle Scholar
  46. International Union for the Protection of New Varieties of Plants. 1991. International convention for the protection of new varieties of plants of 2 December 1961, as revised at Geneva on 10 November 1972, on 23 October 1978 and on 19 March 1991. http://www.upov.int/en/publications. Accessed 6 February 2011
  47. Irish BM, Goenaga R, Zhang DP, Schnell R, Brown JS, Motamayor JC (2010) Microsatellite fingerprinting of the USDA-ARS tropical agriculture research station cacao (Theobroma cacao L.) germplasm collection. Crop Sci 50:656–667CrossRefGoogle Scholar
  48. Khadari B, Breton C, Moutier N, Roger JP, Besnard G, Berville A, Dosba F (2003) The use of molecular markers for germplasm management in a French olive collection. Theor Appl Genet 106:521–529PubMedGoogle Scholar
  49. Khadari B, Charafi J, Moukhli A, Ater M (2008) Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes 4:213–221CrossRefGoogle Scholar
  50. Kimura T, Zhong Shi Y, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52:115–121CrossRefGoogle Scholar
  51. Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito VS (2010) Molecular characterization of genetic diversity, structure, and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Department of Agriculture. Genet Resour Crop Evol 58:519–531CrossRefGoogle Scholar
  52. Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Vares D, Peros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245PubMedCrossRefGoogle Scholar
  53. Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  54. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  55. Martín MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martin LM (2009) Identificationand characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Ann Appl Biol 154:389–398CrossRefGoogle Scholar
  56. Melchiade D, Foroni I, Corrado G, Santangelo I, Rao R (2007) Authentication of the ‘Annurca’ apple in agro-food chain by amplification of microsatellite loci. Food Biotechnol 21(1):33–43CrossRefGoogle Scholar
  57. Motilal L, Butler D (2003) Verification of identities in global cacao germplasm collections. Genet Resour Crop Evol 50:799–807CrossRefGoogle Scholar
  58. Motilal LA, Zhang DP, Umaharan P, Mischke S, Pinney S, Meinhardt LW (2011) Microsatellite fingerprinting in the International Cocoa Genebank, Trinidad: accession and plot homogeneity information for germplasm management. Plant Genet Resour-C 9:430–438CrossRefGoogle Scholar
  59. Mouly PP, Gaydou EM, Faure R, Estienne JM (1997) Blood orange juice authentication using cinnamic acid derivatives. Variety differentiations associated with flavanone glycoside content. J Agric Food Chem 45(2):373–377CrossRefGoogle Scholar
  60. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci U S A 108:3530–3535PubMedCentralPubMedCrossRefGoogle Scholar
  61. Noormohammadi Z, Hosseini-Mazinani M, Trujillo I, Ratio L, Belaj A, Sadeghizadeh M (2007) Identification and classification of main Iranian olive cultivars using Microsatellite markers. Hortscience 42:1545–1550Google Scholar
  62. Park SDE (2001) Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. University of DublinGoogle Scholar
  63. Rallo L (2005) Variedades de olivo en España: una aproximación cronológica. In: Rallo L, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I (eds) Variedades de olivo en España. Junta de Andalucia, MAPA and Ediciones Mundi-Prensa, MadridGoogle Scholar
  64. Rallo L, Barranco D, Castro-García S, Connor DJ, Gómez-del-Campo M, Rallo P (2013) High-density olive plantations. Hortic Rev 41:303–384Google Scholar
  65. Riaz S, Garrison KE, Dangl GS (2002) Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Amer Hort Sci 127(4):508–514Google Scholar
  66. Rohlf FJ (1998) NTSYS-pc. Numerical taxonomy and multivariate analysis system.Version 2.00. Exeter Software. Setauket, New YorkGoogle Scholar
  67. Sarri V, Baldoni L, Porceddu A, Cultrera NGM, Contento A, Frediani M, Belaj A, Trujillo I, Cionini PG (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49:1606–1615PubMedCrossRefGoogle Scholar
  68. Sefc KM, Lopes S, Mendonca D, Dos Santos MR, Machado MLD, Machado AD (2000) Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173PubMedCrossRefGoogle Scholar
  69. Shan F, Clarke HC, Plummer JA, Yan G, Siddique KHM (2005) Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor Appl Genet 110:381–391PubMedCrossRefGoogle Scholar
  70. Soleri D, Koehmstedt A, Aradhya MK, Polito V, Pinney K (2010) Comparing the historic olive trees (Olea europaea L.) of Santa Cruz Island with contemporaneous trees in the Santa Barbara, CA area: a case study of diversity and structure in an introduced agricultural species conserved in situ. Genet Resour Crop Evol 57:973–984CrossRefGoogle Scholar
  71. Staub JE, Meglic V (1993) Molecular genetic markers and their legal relevance for cultivar discrimination: a case study in cucumber. HortTechnology 3(3)Google Scholar
  72. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes, vol. 22 No. 9. Elsevier, AmsterdamGoogle Scholar
  73. Trujillo I, Rallo L, Arus P (1995) Identifying olive cultivars by isozyme analysis. J Am Soc Hortic Sci 120:318–324Google Scholar
  74. Trujillo I, Ojeda MA, Baldoni L, Belaj A (2006) Olive cultivar identification by means of microsatellites (SSR). Olea 25:24–27Google Scholar
  75. van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical bulletin, p 48Google Scholar
  76. Wünsch A, Hormaza JI (2002) Molecular characterisation of sweet cherry (Prunus aviumL.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89:56–63PubMedCrossRefGoogle Scholar
  77. Zhang DP, Mischke S, Johnson ES, Phillips-Mora W, Meinhardt L (2009) Molecular characterization of an international cacao collection using microsatellite markers. Tree Genet Genomes 5:1–10CrossRefGoogle Scholar
  78. Zine El Aabidine M, Charafi J, Grout C, Doligez A, Santoni S, Moukhli A, Jay-Allemand C, El Modafar C (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50(6):2291–2302CrossRefGoogle Scholar
  79. Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327PubMedCrossRefGoogle Scholar
  80. Zulini L, Fabro E, Peterlunger E (2005) Characterisation of the grapevine cultivar Picolit by means of morphological descriptors and molecular markers. Vitis 44(1):35–38Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Isabel Trujillo
    • 1
    Email author
  • Maria A. Ojeda
    • 1
  • Nieves M. Urdiroz
    • 1
  • Daniel Potter
    • 2
  • Diego Barranco
    • 1
  • Luis Rallo
    • 1
  • Concepcion M. Diez
    • 1
  1. 1.Departamento de AgronomíaCampus Universitario de RabanalesCórdobaSpain
  2. 2.Department of Plant Sciences Mail Stop 2University of CaliforniaDavisUSA

Personalised recommendations