Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr.

Abstract

Somatic embryogenesis provides an opportunity to explore the mechanisms underlying the determination of cell fate. In a previous study, differential levels of mature miR171 were found between embryogenic and non-embryogenic cultures and during somatic embryo maturation in Larix kaempferi (Lamb.) Carr. However, little is known about its target genes in these processes. Here, a full-length cDNA for the SCARECROW-LIKE 6 (SCL6) homolog from L. kaempferi, LaSCL6, was cloned. Sequence analysis showed that the miR171 target sequence was present in the LaSCL6 transcript. Isolation of the miRNA-guided cleavage products of LaSCL6 further suggested that this gene was being regulated by miR171. LaSCL6 transcript levels in embryogenic and non-embryogenic cultures and during the late stage of somatic embryo maturation were measured, and the results showed that cleavage of the LaSCL6 mRNAs occurred actively in embryogenic cultures. Based on the relationships between the expression patterns of LaSCL6 and mature miR171, we concluded that the post-transcriptional regulation of LaSCL6 by miR171 might participate in the maintenance of embryogenic potential, providing new insights into the regulatory mechanisms of somatic embryogenesis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aquea F, Arce-Johnson P (2008) Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 46:559–568. doi:10.1016/j.plaphy.2008.02.012

  2. Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692. doi:10.1007/s00425-004-1203-z

  3. Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536. doi:10.1111/j.1469-8137.2007.02239.x

  4. Curaba J, Talbot M, Li Z, Helliwell C (2013) Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol 13:6. doi:10.1186/1471-2229-13-6

  5. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433. doi:10.1016/S0092-8674(00)80115-4

  6. Ge XX, Chai LJ, Liu Z, Wu XM, Deng XX, Guo WW (2012) Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray. Planta 236:1107–1124. doi:10.1007/s00425-012-1661-7

  7. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567. doi:10.1016/S0092-8674(00)80865-X

  8. Hjortswang HI, Larsson AS, Bharathan G, Bozhkov PV, von Arnold S, Vahala T (2002) KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiol Biochem 40:837–843. doi:10.1016/S0981-9428(02)01445-6

  9. Kamiya N, Itoh J, Morikami A, Nagato Y, Matsuoka M (2003) The SCARECROW gene's role in asymmetric cell divisions in rice plants. Plant J 36:45–54. doi:10.1046/j.1365-313X.2003.01856.x

  10. Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659–670. doi:10.1007/s11103-008-9345-1

  11. Li WF, Zhang SG, Han SY, Wu T, Zhang JH, Qi LW (2013) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell Tissue Organ 113:131–136. doi:10.1007/s11240-012-0233-7

  12. Liu X, Gorovsky MA (1993) Mapping the 5' and 3' ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 21:4954–4960. doi:10.1093/nar/21.21.4954

  13. Llave C, Xie ZX, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056. doi:10.1126/science.1076311

  14. Lu S, Sun Y-H, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098. doi:10.1111/j.1365-313X.2007.03208.x

  15. Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116. doi:10.1016/j.febslet.2006.08.046

  16. Ma HS, Liang D, Shuai P, Xia XL, Yin WL (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019. doi:10.1093/jxb/erq217

  17. Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80. doi:10.1111/j.1469-8137.2008.02448.x

  18. Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119. doi:10.1046/j.1365-313X.1999.00431.x

  19. Quiroz-Figueroa F, Méndez-Zeel M, Sánchez-Teyer F, Rojas-Herrera R, Loyola-Vargas VM (2002) Differential gene expression in embryogenic and non-embryogenic clusters from cell suspension cultures of Coffea arabica. J Plant Physiol 159:1267–1270. doi:10.1078/0176-1617-00878

  20. Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ 86:285–301. doi:10.1007/s11240-006-9139-6

  21. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19:271–273. doi:10.1038/cr.2009.6

  22. Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel D (2002) Prediction of plant microRNA targets. Cell 110:513–520. doi:10.1016/S0092-8674(02)00863-2

  23. Tahir M, Belmonte MF, Elhiti M, Flood H, Stasolla C (2008) Identification and characterization of PgHZ1, a novel homeodomain leucine-zipper gene isolated from white spruce (Picea glauca) tissue. Plant Physiol Biochem 46:1031–1039. doi:10.1016/j.plaphy.2008.08.001

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

  25. Tian C, Wan P, Sun S, Li J, Chen M (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532. doi:10.1023/B:PLAN.0000038256.89809.57

  26. Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, von Arnold S (2011) Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genome 7:347–362. doi:10.1007/s11295-010-0336-4

  27. Wang L, Mai YX, Zhang YC, Luo QA, Yang HQ (2010) MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant 3:794–806. doi:10.1093/mp/ssq042

  28. Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505. doi:10.1007/s00425-010-1312-9

  29. Yang JL, Gui YL, Guo ZC (1998) Studies on cytohistology and starch accumulation during somatic embryogenesis of Picea meyeri Rehd. et Wils. Acta Bot Boreal-Occidentalia Sin 18:335–338

  30. Zhang L, Qi LW, Han SY (2009) Differentially expressed genes during Larix somatic embryo maturation and the expression profile of partial genes. Hereditas (Beijing) 31:540–545. doi:10.3724/SP.J.1005.2009.00540

  31. Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010a) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360. doi:10.1016/j.bbrc.2010.06.056

  32. Zhang SG, Han SY, Yang WH, Wei HL, Zhang M, Qi LW (2010b) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tissue Organ 100:21–29. doi:10.1007/s11240-009-9612-0

  33. Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657. doi:10.1007/s00425-012-1643-9

  34. Zhang J, Wu T, Li L, Han S, Li X, Zhang S, Qi L (2013) Dynamic expression of small RNA populations in larch (Larix leptolepis). Planta 237:89–101. doi:10.1007/s00425-012-1753-4

  35. Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423. doi:10.1105/tpc.5.10.1411

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2009CB119106), the National Natural Science Foundation of China (30830086, 31200464), and the National High Technology Research and Development Program of China (2011AA100203, 2013AA102704). The authors thank Dr. IC Bruce (Zhejiang University) and Dr. Yong Guo (Institute of Crop Science, Chinese Academy of Agricultural Sciences) for the critical reading of the manuscript.

Data archiving statement

The full-length cDNA sequences have been submitted to GenBank with the accession number JX280920 for LaSCL6, and JX157845 for LaEF1A1.

Author information

Correspondence to Li-Wang Qi.

Additional information

Communicated by J. Dean

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, W., Zhang, S., Han, S. et al. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr.. Tree Genetics & Genomes 10, 223–229 (2014). https://doi.org/10.1007/s11295-013-0668-y

Download citation

Keywords

  • Larix kaempferi (Lamb.) Carr
  • LaSCL6
  • miR171
  • Somatic embryogenesis