Tree Genetics & Genomes

, Volume 9, Issue 5, pp 1247–1256 | Cite as

Epigenetic characterization of chromatin in cycling cells of pedunculate oak, Quercus robur L.

  • V. Vičić
  • D. Barišić
  • T. Horvat
  • I. Biruš
  • Vlatka Zoldos
Original Paper


Cycling cells of Quercus robur have a simple nuclear organization where most of the heterochromatin is visible as DAPI-positive chromocenters, which correspond to DAPI bands at the (peri)centromeric region of each of the 24 chromosomes of the oak complement. Immunofluorescence using 5-mC revealed dispersed distribution of the signal throughout the interphase nucleus/chromosomes without enrichment within DAPI-positive chromocenters/bands, suggesting that DNA methylation was not restricted to constitutive heterochromatin, but was associated with both euchromatic and heterochromatic domains. While H3K9ac exhibited typical euchromatin-specific distribution, the distributional pattern of histone methylation marks H3K9me1, H3K27me2, and H3K4me3 showed some specificity. The H3K9me1 and H3K27me2, both heterochromatin-associated marks, were not restricted to chromocenters, but showed additional dispersed distribution within euchromatin, while H3K27me2 mark also clustered in foci that did not co-localize with chromocenters. Surprisingly, even though H3K4me3 was distributed in the entire chromatin, many chromocenters were enriched with this euchromatin-specific modification. We discuss the distribution of the epigenetic marks in the context of the genome composition and lifestyle of Q. robur.


Interphase chromatin Chromocenters DNA methylation Epigenetics Histone acetylation Histone methylation Quercus robur 



This work was supported by the Croatian Ministry of Science, Education and Sport Grant 119-1191196-1224 and by AUF (Agence Universitaire de Francophonie) PSCI Grant. We thank the anonymous reviewers who contributed to the improvement of this manuscript.

Supplementary material

11295_2013_632_Fig6_ESM.jpg (298 kb)
Supplementary Fig. S1

Immunolocalization of histone modification marks in A. thaliana interphase nuclei. Scale bar is 5 μm (JPEG 297 kb)

11295_2013_632_MOESM1_ESM.eps (6.8 mb)
High resolution image (EPS 6967 kb)


  1. Allis CD, Jenuwein T, Reinberg D (2007) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  2. Berr A, McCallum EJ, Menard R, Meyer D, Fuchs J, Dong A, Shen WH (2010) Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22(10):3232–3248. doi: 10.1105/tpc.110.079962 PubMedCrossRefGoogle Scholar
  3. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232. doi: 10.1111/j.1365-2818.2006.01706.x PubMedCrossRefGoogle Scholar
  4. Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5(3):e9514. doi: 10.1371/journal.pone.0009514 PubMedCrossRefGoogle Scholar
  5. Braszewska-Zalewska A, Bernas T, Maluszynska J (2010) Epigenetic chromatin modifications in Brassica genomes. Genome 53(3):203–210. doi: 10.1139/G09-088 PubMedCrossRefGoogle Scholar
  6. Carchilan M, Delgado M, Ribeiro T, Costa-Nunes PD, Caperta A, Morais-Cecilio L, Jones RN, Viegas W, Houben A (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19(6):1738–49. doi: 10.1105/tpc.106.046946 PubMedCrossRefGoogle Scholar
  7. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219. doi: 10.1038/nature06745 PubMedCrossRefGoogle Scholar
  8. Faivre Rampant P, Lesur I, Boussardon C, Bitton F, Martin-Magniette ML, Bodenes C, le Provost G, Berges H, Fluch S, Kremer A, Plomion C (2011) Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. BMC Genomics 12:292. doi: 10.1186/1471-2164-12-292 PubMedCrossRefGoogle Scholar
  9. Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14(2):179–86. doi: 10.1016/j.pbi.2010.12.002 PubMedCrossRefGoogle Scholar
  10. Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143(2):212–224. doi: 10.1016/j.cell.2010.09.009 PubMedCrossRefGoogle Scholar
  11. Fransz P, Soppe W, Schubert I (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res 11(3):227–240. doi: 10.1023/A:1022835825899 PubMedCrossRefGoogle Scholar
  12. Fuchs J, Schubert I (2012) Chromosomal distribution and functional interpretation of epigenetic histone marks in plants. In: Bass H, Birchler JA (eds) Plant cytogenetics, vol. 4: plant genetics and genomics: crops and models. Springer, New York, pp 231–253.Google Scholar
  13. Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci 11(4):199–208. doi: 10.1016/j.tplants.2006.02.008 PubMedCrossRefGoogle Scholar
  14. Fuchs J, Jovtchev G, Schubert I (2008) The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res 16:891–898. doi: 10.1007/s10577-008-1252-4 PubMedCrossRefGoogle Scholar
  15. Habu Y, Mathieu O, Tariq M, Probst AV, Smathajitt C, Zhu T, Paszkowski J (2006) Epigenetic regulation of transcription in intermediate heterochromatin. EMBO Rep 7:1279–1284. doi: 10.1038/sj.embor.7400835 PubMedCrossRefGoogle Scholar
  16. Hauser MT, Aufsatz W, Joank C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809(8):459–68. doi: 10.1016/j.bbagrm.2011.03.007 PubMedCrossRefGoogle Scholar
  17. Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33(6):967–973. doi: 10.1046/j.1365-313X.2003.01681.x PubMedCrossRefGoogle Scholar
  18. Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308–315. doi: 10.1007/s00412-004-0275-7 PubMedCrossRefGoogle Scholar
  19. Jasencakova Z, Soppe WJ, Meister A, Gernand D, Turner BM, Schubert I (2003) Histone modifications in Arabidopsis: high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J 33:471–480. doi: 10.1046/j.1365-313X.2003.01638.x PubMedCrossRefGoogle Scholar
  20. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. doi: 10.1126/science.1063127 PubMedCrossRefGoogle Scholar
  21. Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE (2007) The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 17:379–384. doi: 10.1016/j.cub.2007.01.009 PubMedCrossRefGoogle Scholar
  22. Jones JH (1986) Evolution of the Fagaceae: the implications of foliar features. Ann Missouri Bot Gard 73:228–275. doi: 10.2307/2399112 CrossRefGoogle Scholar
  23. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82:85–94. doi: 10.1006/anbo.1998.0783 CrossRefGoogle Scholar
  24. Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprsit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276. doi: 10.1105/tpc.107.056879 PubMedCrossRefGoogle Scholar
  25. Lippman Z, May B, Yordan C, Singer T, Martienssen RA (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modifications. PLoS Biol 1:420–428. doi: 10.1371/journal.pbio.0000067 CrossRefGoogle Scholar
  26. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476. doi: 10.1038/nature02651 PubMedCrossRefGoogle Scholar
  27. Loidl P (2004) A plant dialect of the histone language. Trends Plant Sci 9(2):84–90. doi: 10.1016/j.tplants.2003.12.007 PubMedCrossRefGoogle Scholar
  28. Marques A, Fuchs J, Ma L, Heckmann S, Guerra M, Houben A (2010) Characterization of eu- and heterochromatin of citrus with a focus on the condensation behavior of 45S rDNA chromatin. Cytogenet Genome Res 134(1):72–82. doi: 10.1159/000323971 CrossRefGoogle Scholar
  29. Ohri D, Ahuja MR (1990) Giemsa C-banding in Quercus. Silvae Genet 39:216–219Google Scholar
  30. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10(6):645–652. doi: 10.1016/j.pbi.2007.07.013 PubMedCrossRefGoogle Scholar
  31. Ribeiro T, Viegas W, Morais-Cecilio L (2009) Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae). Sex Plant Reprod 22:1–7. doi: 10.1007/s00497-008-0083-y PubMedCrossRefGoogle Scholar
  32. Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Despres B, Drevensek S, Barneche F, Derozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette M, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30(10):1928–38. doi: 10.1038/emboj.2011.103 PubMedCrossRefGoogle Scholar
  33. Schnable SS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115. doi: 10.1126/science.1178534 PubMedCrossRefGoogle Scholar
  34. Shi J, Dawe RK (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173(3):1571–1583. doi: 10.1534/genetics.106.056853 PubMedCrossRefGoogle Scholar
  35. Soppe WJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21(23):6549–59. doi: 10.1093/emboj/cdf657 PubMedCrossRefGoogle Scholar
  36. Suzuki G, Shiomi M, Morihana S, Yamamoto M, Mukai Y (2010) DNA methylation and histone modification in onion chromosomes. Genes Genet Syst 85(6):377–382. doi: 10.1266/ggs.85.377 PubMedCrossRefGoogle Scholar
  37. Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283. doi: 10.1038/35104508 PubMedCrossRefGoogle Scholar
  38. Tariq M, Saze H, Probst A, Lichota J, Habu Y, Paszkowski JK (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A 100:8823–8827. doi: 10.1073/pnas.1432939100 PubMedCrossRefGoogle Scholar
  39. Toress-Ruiz RA, Hemleben V (1994) Pattern and degree of methylation in ribosomal RNA genes of Cucurbita pepo L. Plant Mol Biol 26:1167–1179. doi: 10.1007/BF00040697 CrossRefGoogle Scholar
  40. Veiseth SV, Rahman MA, Yap KL, Fischer A, Egge-Jacobsen W, Ruter G, Zhou MM, Aalen RB, Thorstensen T (2011) The SUVR4 histon lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis. PloS Genetics 7(3):e1001325. doi: 10.1371/journal.pgen.1001325 PubMedCrossRefGoogle Scholar
  41. Wang Z, Schones DE, Zhao K (2009) Characterization of human epigenomes. Curr Opin Genet Dev 19(2):127–134. doi: 10.1016/j.gde.2009.02.001 PubMedCrossRefGoogle Scholar
  42. Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26(3):307–16. doi: 10.1046/j.1365-313X.2001.01028.x PubMedCrossRefGoogle Scholar
  43. Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J 41(2):189–94. doi: 10.1111/j.1365-313X.2004.02285.x Google Scholar
  44. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340. doi: 10.1016/S0168-9525(97)01181-5 PubMedCrossRefGoogle Scholar
  45. Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen HM, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201. doi: 10.1016/j.cell.2006.08.003 PubMedCrossRefGoogle Scholar
  46. Zhou J, Wang X, He K, Charron JB, Elling AA, Deng XW (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72:585–595. doi: 10.1007/s11103-009-9594-7 PubMedCrossRefGoogle Scholar
  47. Zoldos Pecnik V (2008) Genome organization and evolution in genus Quercus (Fagaceae): special attention to two European white oaks Quercus petraea (Matt.) Liebl. and Q. robur L. In: A.K. Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution. Science, Enfield, pp 43–78.Google Scholar
  48. Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168. doi: 10.1139/g98-006 Google Scholar
  49. Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977. doi: 10.1007/s001220051404 CrossRefGoogle Scholar
  50. Zoldos V, Siljak-Yakovlev S, Papes D, Sarr A, Panaud O (2001) Representational difference analysis reveals genomic differences between Q. robur and Q. suber: implications for the study of genome evolution in the genus Quercus. Mol Genet Genomics 265(2):234–241. doi: 10.1007/s004380000420 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. Vičić
    • 1
  • D. Barišić
    • 1
  • T. Horvat
    • 1
  • I. Biruš
    • 1
  • Vlatka Zoldos
    • 1
  1. 1.Department of Molecular Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations