Tree Genetics & Genomes

, Volume 9, Issue 5, pp 1161–1178 | Cite as

Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations

  • Vikram E. Chhatre
  • Thomas D. Byram
  • David B. Neale
  • Jill L. Wegrzyn
  • Konstantin V. Krutovsky
Original Paper

Abstract

First-generation selection (FGS) and second-generation selection (SGS) breeding populations of loblolly pine from east Texas were studied to estimate the genetic diversity, population structure, linkage disequilibrium (LD), signatures of selection and association of breeding traits with a genome-wide panel of 4,264 single nucleotide polymorphisms (SNPs). Relatively high levels of observed (Ho = 0.178–0.198) and expected (He = 0.180–0.198) heterozygosities were observed in all populations. The amount of inbreeding was very low with many populations exhibiting a slight excess of heterozygotes. The population structure was weak, but FST indicated more pronounced differentiation in the SGS populations. As expected for outcrossing natural populations, the genome-wide LD was low, but marker density was insufficient to deduce the decay rate. Numerous associations were found between various phenotypic traits and SNPs, but only a few remained significant after false positive correction. Signatures of diversifying and balancing selection were found in markers representing important biological functions. These results present the first step in the application of marker-assisted selection (MAS) to the Western Gulf Forest Tree Improvement Program (WGFTIP) for loblolly pine and will contribute to the knowledgebase necessary for genomic selection technology.

Keywords

Association mapping Adaptive traits Breeding Genomic variation Genome-wide linkage disequilibrium Loblolly pine Pinus taeda Population structure SNPs 

References

  1. Abecasis GR, Cookson WOC (2000) GOLD — graphical overview of linkage disequilibrium. Bioinformatics 16(2):182–183PubMedCrossRefGoogle Scholar
  2. Al-Maskri AY, Sajjad M, Khan SH (2012) Association mapping: a step forward to discovering new alleles for crop improvement. Int J Agric Biol 14:153–160Google Scholar
  3. Al-Rabab’ah MA, Williams CG (2002) Population dynamics of Pinus taeda L. based on nuclear microsatellites. For Ecol Manag 163(13):263–271CrossRefGoogle Scholar
  4. Al-Rabab’ah MA, Williams CG (2004) An ancient bottleneck in the lost pines of central Texas. Mol Ecol 13(5):1075–1084PubMedCrossRefGoogle Scholar
  5. Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinforma 9:323CrossRefGoogle Scholar
  6. Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260(5108):672–674PubMedCrossRefGoogle Scholar
  7. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980PubMedCrossRefGoogle Scholar
  8. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Roy Soc B 263:1619–1626CrossRefGoogle Scholar
  9. Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Blais S, Poulin P-L, Lenz P, Caron S, Rigault P, Bicho P, Bousquet J, MacKay J (2011) Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics 188:197–214PubMedCrossRefGoogle Scholar
  10. Besenbacher S, Mailund T, Schierup M (2012) Association mapping and disease: evolutionary perspectives. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods, vol 2, Methods in molecular biology, Chapter 11. Springer Science+Business Media, New York, pp 275–291CrossRefGoogle Scholar
  11. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635PubMedCrossRefGoogle Scholar
  12. Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine [Pinus taeda (L.): III. QTL verification and candidate gene mapping. Genetics 164(4):1537–1546PubMedGoogle Scholar
  13. Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101(42):15255–15260PubMedCrossRefGoogle Scholar
  14. Byram TD, Mullin TJ, White TL, van Buijtenen JP (2005a) The future of tree improvement in the southeastern United States: alternative visions for the next decade. Southern J Appl For 29(2):88–95Google Scholar
  15. Byram T, Myszewski J, Gwaze D, Lowe W (2005b) Improving wood quality in the western gulf forest tree improvement program: the problem of multiple breeding objectives. Tree Genet Genomes 1:85–92CrossRefGoogle Scholar
  16. Cumbie W, Eckert A, Wegrzyn J, Whetten R, Neale D, Goldfarb B (2011) Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity 107:105–114PubMedCrossRefGoogle Scholar
  17. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  18. Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17PubMedCrossRefGoogle Scholar
  19. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St Clair JB, Neale DB (2009a) Association genetics of coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae): I. Cold-hardiness related traits. Genetics 182(4):1289–1302PubMedCrossRefGoogle Scholar
  20. Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009b) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5(1):225–234CrossRefGoogle Scholar
  21. Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB (2010a) Patterns of population structure and environmental associations to aridity across the range of loblolly pine [Pinus taeda (L.), Pinaceae]. Genetics 185(3):969–982PubMedCrossRefGoogle Scholar
  22. Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010b) Back to nature: ecological genomics of loblolly pine ([Pinus taeda], Pinaceae). Mol Ecol 19(17):3789–3805PubMedCrossRefGoogle Scholar
  23. Eckert AJ, Wegrzyn JL, Cumbie WP, Goldfarb B, Huber DA, Tolstikov V, Fiehn O, Neale DB (2012) Association genetics of the loblolly pine ([Pinus taeda], Pinaceae) metabolome. New Phytol 193:890–902PubMedCrossRefGoogle Scholar
  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  25. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391PubMedCrossRefGoogle Scholar
  26. González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172(3):1915–1926PubMedCrossRefGoogle Scholar
  27. González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L.: I. Wood property traits. Genetics 175(1):399–409PubMedCrossRefGoogle Scholar
  28. González-Martínez SC, Dillon S, Garnier-Géré PH, Krutovsky KV, Alía R, Burgarella C, Eckert AJ, Garcia MR, Grivet D, Heuertz M, Jaramillo-Correa JP, Lascoux M, Neale DB, Savolainen O, Tsumura Y, Vendramin GG (2011) Patterns of nucleotide diversity and association mapping. In: Plomion C, Bousquet J, Kole C (eds) Ch. 6 in Genetics, genomics and breeding of conifers. CRC Press, Science Publishers, Enfield, pp 239–275Google Scholar
  29. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485PubMedCrossRefGoogle Scholar
  30. Haldane J (1954) An exact test for randomness of mating. J Genet 52:631–635Google Scholar
  31. Hardy J, Singleton A (2009) Genome wide association studies and human disease. New Eng J Med 360:1759–1768PubMedCrossRefGoogle Scholar
  32. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  33. Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Mugnozza GS (2012) Accelerating the domestication of forest trees in a changing world. Trends Plant Sci 17(2):64–72PubMedCrossRefGoogle Scholar
  34. Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce (Picea abies [L.] Karst). Genetics 174:2095–2105PubMedCrossRefGoogle Scholar
  35. Homolka A, Eder T, Kopecky D, Berenyi M, Burg K, Fluch S (2012) Allele discovery of ten candidate drought-response genes in Austrian oak using a systematically informatics approach based on 454 amplicon sequencing. BMC Res Notes 5:175. doi:10.1186/1756-0500-5-175 PubMedCrossRefGoogle Scholar
  36. Ingvarsson PK (2005) Nucleotide Polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169(2):945–953PubMedCrossRefGoogle Scholar
  37. Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922PubMedCrossRefGoogle Scholar
  38. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806PubMedCrossRefGoogle Scholar
  39. Kelleher CT, Wilkin J, Zhuang J, Cortés AJ, Quintero ÁLP, Gallagher TF, Bohlmann J, Douglas CJ, Ellis BE, Ritland K (2012) SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides. Tree Genet Genomes. doi:10.1007/s11295-012-0467-x (online first) Google Scholar
  40. Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot. doi:10.1093/jxb/ers105 (online first) Google Scholar
  41. Kloth KJ, Thoen MPM, Bouwmeester HJ, Jongsma MA, Dicke M (2012) Association mapping of plant resistance to insects. Trends Plant Sci 17(5):311–319PubMedCrossRefGoogle Scholar
  42. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas-fir. Genetics 171(4):2029–2041PubMedCrossRefGoogle Scholar
  43. Krutovsky KV, Vaganov EA, Chubugina IV, Oreshkova NV, Tretyakova IN, Tyazhelova TV (2012) Complex genome sequencing: preliminary data of Siberian larch complete genome de novo sequencing. Microsymposium I: computational and experimental genomics. The 8th International Conference on the Bioinformatics of Genome Regulation and Structure\Systems Biology, June 25–29, 2012, Novosibirsk, Russia, p. 53 (http://conf.nsc.ru/files/conferences/BGRSSB2012/130321/Program_BGRS_SB_24_06_12.pdf)
  44. Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2011) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8:113–126CrossRefGoogle Scholar
  45. Lowe WJ, van Buijtenen JP (1980) Tree improvement philosophy and strategy for the western gulf forest tree improvement program. Proceedings of the 16th North American quantitative forest genetics group workshop, Coeur D’Alene, Idaho, August 6–8, pp 43–50Google Scholar
  46. Lowe WJ, van Buijtenen JP (1991) Progeny test data summarization procedures in the western gulf forest tree improvement program. In Proceedings of the Southern Forest Tree Improvement Conference, Knoxville, Tennessee, June 17–20, pp 303–312Google Scholar
  47. McKeand SE, Jokela EA, Huber DA, Byram TD, Allen HL, Li B, Mullin TJ (2006a) Performance of improved genotypes of loblolly pine across different soils, climates, and silvicultural inputs. For Ecol Manag 227:178–184CrossRefGoogle Scholar
  48. McKeand SE, Abt RC, Lee Allen H, Li B, Catts GP (2006b) What are the best loblolly pine genotypes worth to landowners? J For 104(7):325–358Google Scholar
  49. Moritsuka E, Hisataka Y, Tamura M, Uchiyama K, Watanabe A, Tsumura Y, Tachida H (2012) Extended linkage disequilibrium in non-coding regions in a conifer, Cryptomeria japonica. Genetics 190(3):1145–1148PubMedCrossRefGoogle Scholar
  50. Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Rajeev VK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125(4):625–645Google Scholar
  51. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122PubMedCrossRefGoogle Scholar
  52. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  53. O’Brien I, Smith D, Gardner R, Murray B (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115(1):91–99CrossRefGoogle Scholar
  54. Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005PubMedCrossRefGoogle Scholar
  55. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  56. Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine [Pinus taeda (L.)]. Genetics 186(2):677–686PubMedCrossRefGoogle Scholar
  57. Rafalski AJ (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13(2):174–180PubMedCrossRefGoogle Scholar
  58. Resende MFR Jr, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012a) Accuracy of genomic selection methods in a standard dataset of loblolly pine [Pinus taeda (L.)]. Genetics 190:1503–1510PubMedCrossRefGoogle Scholar
  59. Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012b) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128PubMedCrossRefGoogle Scholar
  60. Ritland K (2012) Genomics of a phylum distant from flowering plants: conifers. Tree Genet Genomes 8:573–582CrossRefGoogle Scholar
  61. Ritland K, Krutovsky K, Tsumura Y, Pelgas B, Isabel N, Bousquet J (2011) Genetic mapping in conifers. In: Plomion C, Bousquet J, Kole C (eds) Ch. 5 in Genetics, Genomics and Breeding of Conifers. CRC Press, Science Publishers, Enfield, pp 196–238Google Scholar
  62. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138CrossRefGoogle Scholar
  63. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  64. Rousset F (2008) GENEPOP 4.01: a complete re-implementation of the genepop software for windows and linux. Mol Ecol Resour 8(1):103–106PubMedCrossRefGoogle Scholar
  65. Sato Y, Wuli B, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine [Pinus taeda (L.)]. J Plant Res 114:147–155CrossRefGoogle Scholar
  66. Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78(4):629–644PubMedCrossRefGoogle Scholar
  67. Schmidtling RC (2007) Genetic variation in the southern pines: evolution, migration and adaptation following the Pleistocene. In: Kabrick JM, Dey DC, Gwaze D (eds) Shortleaf pine restoration and ecology in the Ozarks: Proceedings of a symposium; 2006 November 7–9; Springfield, MO. Gen. Tech. Rep. NRS-P-15. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, pp 28–32Google Scholar
  68. Schmidtling RC, Carroll E, LaFarge T (1999) Allozyme diversity of selected and natural loblolly pine populations. Silvae Genetica 48(1):35–45Google Scholar
  69. Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine [Pinus taeda (L.)]: I. Physical wood properties. Theor Appl Genet 101:1273–1281CrossRefGoogle Scholar
  70. Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine [Pinus taeda (L.)]: II. Chemical wood properties. Theor Appl Genet 104:214–222PubMedCrossRefGoogle Scholar
  71. Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15(14):4261–4293PubMedCrossRefGoogle Scholar
  72. Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. Chapter 3 in Genetic diversity in plants, Edited by Mahmut Çalişkan. InTech, pp. 29–54 Google Scholar
  73. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  74. Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc B 64:479–498CrossRefGoogle Scholar
  75. Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–383PubMedCrossRefGoogle Scholar
  76. Strobeck C (1987) Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117(1):149–153PubMedGoogle Scholar
  77. Todd D, Pait J, Hodge J (1995) The impact and value of tree improvement in the south. In Proceedings of 23rd Southern Forest Tree Improvement Conference, Asheville, NC, June 20–22, 1995, pp 7–16. Southern Forest Tree Improvement Committee.Google Scholar
  78. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  79. Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532PubMedCrossRefGoogle Scholar
  80. Williams CG (2009) Conifer reproductive biology. Springer ISBN 978-1-4020-9601-3Google Scholar
  81. Williams CG, Savolainen O (1996) Inbreeding depression in conifers: implications for breeding strategy. Forest Sci 42(1):102–117Google Scholar
  82. Wright S (1978) Variability within and among natural populations, volume 4. University of Chicago Press, ChicagoGoogle Scholar
  83. Xu S, Tauer CG, Nelson CD (2008) Genetic diversity within and among populations of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.). Tree Genet Genomes 4:859–868CrossRefGoogle Scholar
  84. Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R (2012) SNP markers trace familial linkages in a cloned population of Pinus taeda—prospects for genomic selection. Tree Genet Genomes 8(6):1307–1318Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vikram E. Chhatre
    • 1
    • 2
  • Thomas D. Byram
    • 2
    • 3
  • David B. Neale
    • 4
  • Jill L. Wegrzyn
    • 4
  • Konstantin V. Krutovsky
    • 2
    • 5
    • 6
    • 7
  1. 1.Genetics Graduate ProgramTexas A&M UniversityCollege StationUSA
  2. 2.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  3. 3.Western Gulf Forest Tree Improvement Program, Texas Forest ServiceCollege StationUSA
  4. 4.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  5. 5.Department of Forest Genetics and Forest Tree Breeding, Büsgen-InstituteGeorg-August-University of GöttingenGöttingenGermany
  6. 6.Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  7. 7.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations