Tree Genetics & Genomes

, Volume 9, Issue 4, pp 1089–1097 | Cite as

Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis

  • Eduardo Andrade Bressan
  • Alexandre Magno Sebbenn
  • Renato Rodrigues Ferreira
  • Tseng Sheng Gerald Lee
  • Antonio Figueira
Original Paper

Abstract

The hierarchical mating system among and within fruits of Jatropha curcas was investigated in a base population using five microsatellite loci, employing mixed mating and correlated mating models. Open-pollinated fruits were collected from 15 randomly selected seed trees, sampling seven fruits per tree for a total of 21 seeds from each tree. We detected multilocus genotypes identical to the mother tree in 13 % of offspring, implying the occurrence of apomixis in J. curcas. The presumed apomictic individuals were excluded from the analysis of the remaining results. Evidence of substantial selfing was provided by the average multilocus outcrossing rate (tm = 0.683), showing that the species exhibits a mixed mating system. The outcrossing rate showed a large variation among seed trees, ranging from 0.21 to 1.0, indicating that the species is not self-incompatible. Significant differences were detected between the multilocus and the single locus outcrossing rates (tm − ts = 0.347) that suggested mating among related individuals, possibly because of the presence of individuals from the same progeny (sibs) in the base population. The multilocus paternity correlation was extremely high for the population (rp(m) = 0.999), indicating that the progenies were manly composed of full-sibs. As a consequence of selfing and a high paternity correlation, the co-ancestry coefficient within the progeny was higher (Θ = 0.369) than expected for panmictic populations. Our results indicated that J. curcas produces seeds asexually by apomixis and sexually by a mixed mating system, combining selfing and outcrossing.

Keywords

Effective population size Mating system analysis Microsatellite loci Tropical tree 

Supplementary material

11295_2013_623_MOESM1_ESM.docx (16 kb)
ESM Table 1(DOCX 16 kb)

References

  1. Abdelgadir HA, Johnson SD, Van Staden J (2008) Approaches to improve seed production of Jatropha curcas L. S Afr J Bot 74:359CrossRefGoogle Scholar
  2. Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A (2003) Mating system in natural population of Theobroma grandiflorum (Willd ex Spreng) Shumm. Genet Mol Biol 26:373–379CrossRefGoogle Scholar
  3. Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A (2007) High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genet Genomes 3:289–298CrossRefGoogle Scholar
  4. Bajay MM, Zucchi MI, Kiihl TAM, Batista CEA, Monteiro M, Pinheiro JB (2011) Development of a novel set of microsatellite markers for castor bean, Ricinus communis (Euphorbiaceae). Am J Bot 98:e87–89PubMedCrossRefGoogle Scholar
  5. Basha SD, Sujatha M (2007) Inter and intra-population variability Jatropha curcas characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  6. Basha SD, Francis G, Makkar HPS, Becker K, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823CrossRefGoogle Scholar
  7. Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460CrossRefGoogle Scholar
  8. Bicknell RA, Koltunow AM (2004) Understanding apomixes: recent advances and remaining conundrums. Plant Cell 16:s228–s245PubMedCrossRefGoogle Scholar
  9. Bressan EA, Scotton DC, Ferreira RR, Jorge EC, Sebbenn AM, Lee TSG, Figueira A (2012) Development of microsatellite primers for Jatropha curcas (Euphorbiaceae) and transferability to congeners. Am J Bot 99:e237–239CrossRefGoogle Scholar
  10. Chang-Wei L, Kun L, You C, Young-YU S (2007) Floral display and breeding system of Jatropha curcas L. Forest Stud China 10:114–119Google Scholar
  11. Creste S, Tulmann-Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306CrossRefGoogle Scholar
  12. Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi-Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  13. Fairless D (2007) The little shrub that could—maybe. Nature 449:652–655PubMedCrossRefGoogle Scholar
  14. Furlani LCM, Moraes CMB, Moraes MLT, Paiva JR, Sebbenn AM (2005) Mating system in a Hevea brasiliensis population by isozymes loci. Crop Breed Appl Biotechnol 5:402–409Google Scholar
  15. Gaiotto FA, Gratapaglia D, Vencovsky R (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mar.). J Hered 94:399–406PubMedCrossRefGoogle Scholar
  16. Gillet E, Hattemer HH (1989) Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63:135–141CrossRefGoogle Scholar
  17. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann Rev Ecol Evolut Syst 36:47–79CrossRefGoogle Scholar
  18. Goudet J (1995) Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  19. Hamrick JL, Godt JW (1989) Allozyme diversity on plant species. In: Brown AHD, Clegg MJ, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp 43–63Google Scholar
  20. Hamrick JL, Loveless MD (1986) Isozyme variation in tropical trees; procedures and preliminary results. Biotropica 8:201–207CrossRefGoogle Scholar
  21. Heller J (1996) Physic nut, Jatropha curcas L.: promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resource Institute, RomeGoogle Scholar
  22. Juhász ACP, Pimenta S, Soares BO, Morais DLB, Rabello HO (2009) Biologia floral e polinização artificial de pinhão manso no norte de Minas Gerais. Pesqui Agropecu Bras 44:1073–1077CrossRefGoogle Scholar
  23. Kant P, Wu S (2011) The extraordinary collapse of Jatropha as a Global biofuel. Environ Sci Technol 45:7114–7115PubMedCrossRefGoogle Scholar
  24. Luo CW, Huang ZY, Chen XM, Li K, Chen Y, Sun YY (2011) Contribution of diurnal and nocturnal insects to the pollination of Jatropha curcas (Euphorbiaceae) in southwestern China. J Econ Entomol 104:149–154PubMedCrossRefGoogle Scholar
  25. Nassar NMA, Vieira MA, Vieira C, Grattapaglia D (1998) A molecular and embryonic study of apomixis in cassava (Manihot esculenta Crantz). Euphytica 102:9–13CrossRefGoogle Scholar
  26. Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398Google Scholar
  27. Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859CrossRefGoogle Scholar
  28. Ritland K (2002) Estimation of gene frequency and heterozygosity from pooled samples. Mol Ecol Notes 78:370–372CrossRefGoogle Scholar
  29. Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequencies using independent loci. Heredity 47:35–52CrossRefGoogle Scholar
  30. Rosado TB, Laviola BG, Faria DA, Pappas MR, Bhering LL, Quirino B, Grattapaglia D (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50:2372–2382CrossRefGoogle Scholar
  31. Santos MJ, Machado IC, Lopes AV (2005) Biologia reprodutiva de duas espécies de Jatropha L. (Euphorbiaceae) em caatinga, Nordeste do Brasil. Rev Bras Bot 28:361–373CrossRefGoogle Scholar
  32. Sereno ML, Albuquerque PSB, Vencovsky R, Figueira A (2006) Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated for microsatellite markers. Conserv Genet 7:13–24CrossRefGoogle Scholar
  33. Shaw DV, Kahler AL, Allard RW (1981) A multilocus estimator of mating system parameters in plant populations. Proc Natl Acad Sci 8:1298–1302CrossRefGoogle Scholar
  34. Silva RM, Bandel G, Martins PS (2003) Mating system in an experimental garden composed of cassava (Manihot esculenta Crantz) ethnovarieties. Euphytica 134:127CrossRefGoogle Scholar
  35. Silva CRS, Albuquerque PSB, Ervedosa FR, Mota JWS, Figueira A, Sebbenn AM (2011) Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian. Heredity 106:973–985PubMedCrossRefGoogle Scholar
  36. Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  37. Sorensen FC, White TL (1988) Effect of natural inbreeding on variance structure in tests of wind-pollination Douglas-Fir progenies. For Sci 34:102–118Google Scholar
  38. Sudheer Pamidimarri DVNS, Mastan SG, Rahman H, Reddy MP (2010) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257CrossRefGoogle Scholar
  39. Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232CrossRefGoogle Scholar
  40. Sun QB, Li LF, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1870CrossRefGoogle Scholar
  41. Tanya P, Dachapac S, Tar MM, Srinives P (2011) A new microsatellite markers classifying nontoxic and toxic Jatropha curcas. J Genet 90:e76–e78PubMedGoogle Scholar
  42. Yi C, Zhang S, Liu X, Bui HTN, Hong Y (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10:259PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eduardo Andrade Bressan
    • 1
  • Alexandre Magno Sebbenn
    • 2
  • Renato Rodrigues Ferreira
    • 1
  • Tseng Sheng Gerald Lee
    • 3
  • Antonio Figueira
    • 1
  1. 1.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  2. 2.Seção de Melhoramento e Conservação Genética FlorestalInstituto Florestal de São PauloPiracicabaBrazil
  3. 3.Centro de Ciências AgráriasUniversidade Federal de São CarlosArarasBrazil

Personalised recommendations