Advertisement

Tree Genetics & Genomes

, Volume 9, Issue 5, pp 1129–1142 | Cite as

Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary

  • María Valbuena-CarabañaEmail author
  • Luis Gil
Original Paper

Abstract

Recent land use changes entailed the abandonment of traditional forest practices, which genetic and ecological sustainability should be evaluated in the frame of current socioeconomic and ecological changes. The present study aimed to assess the conservation value of Quercus pyrenaica Willd. in stands subjected to two traditional rural practices, one specific (coppicing) and the other generic (maintenance of open parklands), and their effects on genetic diversity and clonal structure in this singular root sprouting oak at the southern limit of its distribution. Genetic diversity measures of seven nuclear simple sequence repeat markers were compared, and Hardy–Weinberg disequilibria were tested to be originated from recent population demography. Results showed that, regardless of forest structure, the degree of clonality was very similar (∼60 %), being allele and lineage density proportional to stem density. Nevertheless, evenness of clonal distribution was higher in coppice, suggesting more homogeneous management than in open woodland. Contrary to previous beliefs, coppice stands do not involve genetic diversity losses; rather, the process of forest conversion into open woodland leads to the removal of numerous genetic lineages and low frequency alleles. The ancient presence of Q. pyrenaica in the region, which constituted quaternary glacial refuge, may contribute to its high genetic diversity. Historical vicissitudes in this anthropogenic deforested territory remark its resilient character; based on a specific fire pre-adaptive trait, continued coppicing fostered the preservation of its natural genetic diversity. This study evidences the importance of the integration of molecular and historical approximations to assess the genetic and conservation status of a secularly profited woody species.

Keywords

Clonality Coppice forest Dehesa Forest management Genet Genetic diversity Multilocus lineage Multistem stool Ramet 

Notes

Acknowledgments

We are grateful to Elena Zafra Felipe for her inestimable help in laboratory works. We also wish to thank C. Collada, Z. Lorenzo, and C. Otero for assistance with field work. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve an earlier version of this paper. This work was funded by the OAPN/030/2007 project. Data from Valsaín coppice was funded by CAM P2009/AMB-1668 project and OAPN Prop23/10 JD/pl contract.

References

  1. Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quaternary Sci Rev 30:1615–1629CrossRefGoogle Scholar
  2. Arnaud-Haond S, Belkhir K (2007) Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17CrossRefGoogle Scholar
  3. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139PubMedCrossRefGoogle Scholar
  4. Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biol Conserv 85:269–285CrossRefGoogle Scholar
  5. Blanca G, López MR, Lorite J, Martínez MJ, Molero J, Quintana J, Ruiz M, Varo MA, Vidal S (2002) Flora amenazada y endémica de Sierra Nevada. Universidad de Granada, Consejería de Medio Ambiente de la Junta de Andalucía, GranadaGoogle Scholar
  6. Blondel J (2006) The ‘Design’ of mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729CrossRefGoogle Scholar
  7. Bilgin R (2007) KGTESTS: a simple Excel Macro program to detect signatures of population expansion using microsatellites. Mol Ecol Notes 7:416–417CrossRefGoogle Scholar
  8. Boissier CE (1837) Viaje botánico al Sur de España. Colección Sierra Nevada y La Alpujarra nº 13, Fundación Caja de Granada & Universidad de Málaga, Manigua SL 1995, GranadaGoogle Scholar
  9. Bravo JA, Roig S, Serrada R (2008) Selvicultura en montes bajos y medios de Q ilex L, Q pyrenaica Willd y Q faginea Lam. In: Serrada R, Montero G, Reque JA (eds) Compendio de Selvicultura Aplicada en España. Inia y Fucovasa, Madrid, pp 657–744Google Scholar
  10. Camacho Olmedo MT, García Martínez P, Jiménez Olivencia Y, Menor Toribo J, Paniza Cabrera A (2002) Dinámica evolutiva del paisaje vegetal de la Alta Alpujarra granadina en la segunda mitad del siglo XX. Cuadernos Geográficos 32:25–42Google Scholar
  11. Cañellas I, del Río M, Roig S, Montero G (2004) Growth response to thinning in Quercus pyrenaica Willd coppice stands in Spanish central mountain. Ann For Sci 61:243–250CrossRefGoogle Scholar
  12. Catastro (1752) Catastro de Ensenada Respuestas Generales. PARES (Portal de Archivos Españoles), Ministerio de Cultura, Madrid. http://paresmcues/Catastro/servlets/ServletController. Accessed 17 Jul 2012
  13. Clemente SR (1804–1809) Simón de Rojas Clemente Rubio. Viaje a Andalucía “Historia Natural del Reino de Granada” (1804–1809) (ed by Gil Albarracín A, 2002) Griselda Bonet Girabet, BarcelonaGoogle Scholar
  14. Comisión (1870) Comisión de la Flora Forestal Española. Resumen de los trabajos verificados por la misma durante los años 1867 y 1868. Tomo I, MadridGoogle Scholar
  15. Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (eds) (1998) Los bosques ibéricos. Una interpretación geobotánica, Planeta, BarcelonaGoogle Scholar
  16. Christensen NL, Bartuska AM, Brown JH, Carpenter S, D’Antonio C, Francis R, Franklin JF, MacMahon JA, Noss RF, Parsons DJ, Peterson CH, Turner MG, Woodmansee RG (1996) The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecol Appl 6:665–691CrossRefGoogle Scholar
  17. Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350CrossRefGoogle Scholar
  18. Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141CrossRefGoogle Scholar
  19. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  21. Geburek T, Konrad H (2008) Why the conservation of forest genetic resources has not worked. Conserv Biol 22:267–274PubMedCrossRefGoogle Scholar
  22. Gómez Moreno M (1951) De la Alpujarra. Al-Andalus 16:17–36Google Scholar
  23. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467PubMedCrossRefGoogle Scholar
  24. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–120CrossRefGoogle Scholar
  25. Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11:139–147CrossRefGoogle Scholar
  26. Jiménez Olivencia Y (1991) Los paisajes de Sierra Nevada. Granada. Universidad de Granada, GranadaGoogle Scholar
  27. Jiménez Olivencia Y, Porcel Rodríguez L, Píñar Álvarez A (2010) Evolución histórica de los paisajes del Parque Nacional de Sierra Nevada y su entorno. In: Ramírez L, Asensio B (eds) Proyectos de Investigación en Parques Nacionales: 2006–2009. Organismo Autónomo de Parques Nacionales, Madrid, pp 109–128Google Scholar
  28. Jump AS, Marchant R, Peñuelas J (2008) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58PubMedCrossRefGoogle Scholar
  29. Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  30. Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186CrossRefGoogle Scholar
  31. Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. For Ecol Manag 197:257–271CrossRefGoogle Scholar
  32. Lefèvre F (2007) Conservation of forest genetic resources under climate change: the case of France. In: Koskela J, Buck A, Teissier du Cros E (eds) Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Biodiversity International, Rome, pp 95–101Google Scholar
  33. López Ontiveros A, Naranjo Ramírez J (2000) El nomadismo y la trashumancia en Sierra Nevada según Juan Carandell y Max Sorre. Cuadernos Geográficos 30:431–443Google Scholar
  34. Montalvo AM, Conard SG, Conkle MT, Hodgskiss PD (1997) Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae). Am J Bot 84:1553–1564PubMedCrossRefGoogle Scholar
  35. Moreno G, Pulido FJ (2009) The functioning, management and persistence of dehesas. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe, current status and future prospects. Springer, Berlin, pp pp 127–160Google Scholar
  36. Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. For Ecol Manag 156:89–102CrossRefGoogle Scholar
  37. Parks JC, Werth CR (1993) A study of spatial features of clones in a population of Bracken Fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544CrossRefGoogle Scholar
  38. Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol 11:157–189CrossRefGoogle Scholar
  39. Peterson CJ, Jones RH (1997) Clonality in woody plants: a review and comparison with clonal herbs. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, pp pp 263–289Google Scholar
  40. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  41. Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  42. Pons A, Reille M (1988) The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeog Palaeocl 66:243–263CrossRefGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  44. Prugnolle F, Choisy M, de Meeûs T (2008) CLONALITY V04: a randomization-based program to test for heterozygosity-genet size relationships in clonal organisms. Mol Ecol Resour 8:954–956PubMedCrossRefGoogle Scholar
  45. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  46. Reich DE, Goldstein DB (1998) Genetic evidence for a Paleolithic human population expansion in Africa. P Natl Acad Scie USA 95:8119–8123CrossRefGoogle Scholar
  47. Reich DE, Feldman MW, Goldstein DB (1999) Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol Biol Evol 16:453–466CrossRefGoogle Scholar
  48. Ruiz de la Torre J (1979) Árboles y arbustos de la España Peninsular. Escuela Técnica Superior de Ingenieros de. Montes, MadridGoogle Scholar
  49. Ruiz de la Torre J (1990) Mapa forestal de España escala 1:200 000 Memoria General. Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  50. Ruiz de la Torre J (2006) Flora Mayor. Organismo Autónomo de Parques Nacionales, Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, MadridGoogle Scholar
  51. Salomón R, Valbuena-Carabaña M, Gil L, González-Doncel I (2013) Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: bigger is less vigorous. For Ecol Manag 296:108–118Google Scholar
  52. Sánchez Martínez M (1976) La cora de Ilbira (Granada y Almería) en los siglos X y XI, según al-Udri (1003–1085). Cuadernos de Historia del Islam 7:5–82Google Scholar
  53. San Miguel A (1985) Variaciones producidas en un pastizal arbolado con rebollos (Quercus pyrenaica Willd) por claras de distinta intensidad. An INIA Serie Forestal 9:97–104Google Scholar
  54. Schaberg PG, De Hayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862CrossRefGoogle Scholar
  55. Serrada R, González I, López C, Marchal B, San Miguel A, Tolosana E (1994) Dasometric classification and alternative silvopastoral uses of rebollo oak (Quercus pyrenaica Willd) stands in Madrid. Design of a pilot project. Investig Agrar Sist Recur For Fuera de Serie 3:79–88Google Scholar
  56. Simonet FJ (1888) Glosario de voces ibéricas y latinas usadas entre los mozárabes: precedido de un estudio sobre el dialecto hispano-mozárabe. Real Academia de la Historia, MadridGoogle Scholar
  57. Spong G, Hellborg L (2002) A near-extinction event in Lynx: do microsatellite data tell the tale?. Conservation Ecology 6. http://www.consecolorg/vol6/iss1/art15/. Accessed 17 Jul 2012
  58. Steinger T, Körner C, Schmid B (1996) Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:94–99CrossRefGoogle Scholar
  59. Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT)n microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096PubMedCrossRefGoogle Scholar
  60. Stenberg P, Ludmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331CrossRefGoogle Scholar
  61. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University, New YorkCrossRefGoogle Scholar
  62. Valbuena Carabaña M (2006) Estructura genética e hibridación de Quercus petraea (Matts.) Liebl. y Quercus pyrenaica Willd. en La Sierra Norte de Madrid. Dissertation, Universidad Politécnica de MadridGoogle Scholar
  63. Valbuena-Carabaña M, González-Martínez SC, Hardy OJ, Gil L (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Mol Ecol 16:1207–1219PubMedCrossRefGoogle Scholar
  64. Valbuena-Carabaña M, González-Martínez SC, Gil L (2008) Coppice forests and genetic diversity: a case study in Quercus pyrenaica Willd from Central Spain. For Ecol Manag 254:225–232CrossRefGoogle Scholar
  65. Valbuena-Carabaña M, López de Heredia UL, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palyno 162:492–506CrossRefGoogle Scholar
  66. Ximénez de Embún J (1977) El monte bajo. Ministerio de Agricultura, MadridGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Forest Genetics and Ecophysiology Research Group, E.T.S. Forestry EngineeringTechnical University of Madrid (UPM)MadridSpain

Personalised recommendations