Tree Genetics & Genomes

, Volume 9, Issue 4, pp 989–1004 | Cite as

Diversity and cis-element architecture of the promoter regions of cellulose synthase genes in Eucalyptus

  • Nicky M. Creux
  • Minique H. De Castro
  • Martin Ranik
  • Mathabatha F. Maleka
  • Alexander A. Myburg
Original Paper


Lignocellulosic biomass from fast-growing plantation trees is composed of carbohydrate-rich materials deposited into plant cell walls in a coordinated manner during wood formation. The diversity and evolution of the transcriptional networks regulating this process have not been studied extensively. We investigated patterns of species-level nucleotide diversity in the promoters of cellulose synthase (CesA) genes from different Eucalyptus tree species and assessed the possible roles of DNA sequence polymorphism in the gain or loss of cis-elements harboured within the promoters. Promoter regions of three primary and three secondary cell wall-associated CesA genes were isolated from 13 Eucalyptus species and were analysed for nucleotide and cis-element diversity. Species-level nucleotide diversity (π) ranged from 0.014 to 0.068, and different CesA promoters exhibited distinct patterns of sequence conservation. A set of 22 putative cis-elements were mapped to the CesA promoters using in silico methods. Forty-two percent of the mapped cis-element occurrences contained singleton polymorphisms which resulted in either gain or loss of a cis-element in a particular Eucalyptus species. The promoters of Eucalyptus CesA genes contained regions that are highly conserved at the species (Eucalyptus) and genus (with Arabidopsis and Populus) level, suggesting the presence of regulatory modules imposing functional constraint on such regions. Nucleotide polymorphisms in the CesA promoters more frequently created new cis-element occurrences than disrupted existing cis-element occurrences, a process which may be important for the maintenance and evolution of cellulose gene regulation in plants.


cis-element conservation Promoter evolution Secondary cell wall Wood formation CesA Woody biomass 

Supplementary material

11295_2013_611_MOESM1_ESM.pdf (69 kb)
ESM 1(PDF 69 kb)
11295_2013_611_MOESM2_ESM.pdf (60 kb)
ESM 2(PDF 59 kb)
11295_2013_611_MOESM3_ESM.pdf (55 kb)
ESM 3(PDF 55 kb)
11295_2013_611_MOESM4_ESM.pdf (833 kb)
ESM 4(PDF 832 kb)
11295_2013_611_MOESM5_ESM.pdf (419 kb)
ESM 5(PDF 418 kb)
11295_2013_611_MOESM6_ESM.xlsx (131 kb)
ESM 6(XLSX 130 kb)
11295_2013_611_MOESM7_ESM.pdf (43 kb)
ESM 7(PDF 42 kb)


  1. Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997PubMedCrossRefGoogle Scholar
  2. Bernard V, Brunaud V, Lecharny A (2010) TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genomics 11:166PubMedCrossRefGoogle Scholar
  3. Blanchette M, Schwikowski B, Tompa M (2002) Algorithms for phylogenetic footprinting. J Comput Biol 9:211–223PubMedCrossRefGoogle Scholar
  4. Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res 12:739–748PubMedCrossRefGoogle Scholar
  5. Blanchette M, Tompa M (2003) FootPrinter: a program designed for phylogenetic footprinting. Nucl Acids Res 31:3840–3842PubMedCrossRefGoogle Scholar
  6. Brooker MIH (2000) A new classification of the genus Eucalyptus L'Her. (Myrtaceae). Aust Syst Bot 13:79–148CrossRefGoogle Scholar
  7. Burn JE, Hocart CH, Birch RJ, Cork AC, Williamson RE (2002) Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 129:797–807PubMedCrossRefGoogle Scholar
  8. Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236PubMedCrossRefGoogle Scholar
  9. Carmack CS, McCue L, Newberg L, Lawrence C (2007) PhyloScan: identification of transcription factor binding sites using cross-species evidence. Algoritm Mol Biol 2:1CrossRefGoogle Scholar
  10. Creux NM, Ranik M, Berger DK, Myburg AA (2008) Comparative analysis of orthologous cellulose synthase promoters from Arabidopsis, Populus and Eucalyptus: evidence of conserved regulatory elements in angiosperms. New Phytol 179:722–737PubMedCrossRefGoogle Scholar
  11. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCrossRefGoogle Scholar
  12. Das M, Dai HK (2007) A survey of DNA motif finding algorithms. BMC Bioinforma 8:S21CrossRefGoogle Scholar
  13. de Meaux J, Pop A, Mitchell-Olds T (2006) Cis-regulatory evolution of chalcone-synthase expression in the genus Arabidopsis. Genetics 174:2181–2202PubMedCrossRefGoogle Scholar
  14. Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70PubMedCrossRefGoogle Scholar
  15. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H, Gonneau M, Vernhettes S (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci 104:15572–15577PubMedCrossRefGoogle Scholar
  16. Ding J, Hu H, Li X (2012) Thousands of cis-regulatory sequence combinations are shared by Arabidopsis and poplar. Plant Physiol 158:145–155PubMedCrossRefGoogle Scholar
  17. Eldridge K, Davidson J, Harwood C, van Wyk GV (1994) Eucalypt domestication and breeding. Oxford University Press, New yorkGoogle Scholar
  18. Fang F, Blanchette M (2006) FootPrinter3: phylogenetic footprinting in partially alignable sequences. Nucleic Acids Res 34:W617–W620PubMedCrossRefGoogle Scholar
  19. Farnham PJ (2009) Insights from genomic profiling of transcription factors. Nat Rev Genet 10:605–616PubMedCrossRefGoogle Scholar
  20. Freeling M, Subramaniam S (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol 12:126–132PubMedCrossRefGoogle Scholar
  21. Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567PubMedCrossRefGoogle Scholar
  22. Gorshkova T, Brutch N, Chabbert B, Deyholos M, Hayashi T, Lev-Yadun S, Mellerowicz EJ, Morvan C, Neutelings G, Pilate G (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions. CRC Crit Rev Plant Sci 31:201–228CrossRefGoogle Scholar
  23. Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:148–156PubMedCrossRefGoogle Scholar
  24. Hall A (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  25. Hamann T, Osborne E, Youngs HL, Misson J, Nussaume L, Somerville C (2004) Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11:279–286CrossRefGoogle Scholar
  26. Hansen L, Mariño-RamÃrez L, Landsman D (2010) Many sequence-specific chromatin modifying protein-binding motifs show strong positional preferences for potential regulatory regions in the Saccharomyces cerevisiae genome. Nucleic Acids Res 38:1772–1779PubMedCrossRefGoogle Scholar
  27. Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 4:e1000106CrossRefGoogle Scholar
  28. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  29. Ho MCW, Johnsen H, Goetz SE, Schiller BJ, Bae E, Tran DA, Shur AS, Allen JM, Rau C, Bender W, Fisher WW, Celniker SE, Drewell RA (2009) Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila. PLoS Genet 5:e1000709CrossRefGoogle Scholar
  30. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145PubMedCrossRefGoogle Scholar
  31. Karthikeyan AS, Ballachanda DN, Raghothama KG (2009) Promoter deletion analysis elucidates the role of cis elements and 5′UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis. Plant Physiol 136:10–18CrossRefGoogle Scholar
  32. Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci 86:9253–9257CrossRefGoogle Scholar
  33. Kim HD, Shay T, O'Shea EK, Regev A (2009) Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325:429–432PubMedCrossRefGoogle Scholar
  34. Ko J-H, Beers E, Han K-H (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Genet Genomics 276:517–531CrossRefGoogle Scholar
  35. Koch MA, Weisshaar B, Kroymann J, Haubold B, Mitchell-Olds T (2001) Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol Biol Evol 18:1882–1891PubMedCrossRefGoogle Scholar
  36. Kulheim C, Hui Yeoh S, Maintz J, Foley W, Moran G (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 10:452PubMedCrossRefGoogle Scholar
  37. Kumar M, Thammannagowda S, Bulone V, Chiang V, Han K-H, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254PubMedCrossRefGoogle Scholar
  38. Legay S, Sivadon P, Blervacq A-S, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from Eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786PubMedCrossRefGoogle Scholar
  39. Ling LL, Keohavong P, Dias C, Thilly WG (1991) Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases. Genome Res 1:63–69CrossRefGoogle Scholar
  40. Livny J, Waldor MK (2009) Mining regulatory 5′UTRs from cDNA deep sequencing datasets. Nucleic Acids Res 38:1504–1514PubMedCrossRefGoogle Scholar
  41. Love J, Björklunda S, Vahala J, Hertzberg M, Kangasjärvib J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci U S A 106:5984–5989PubMedCrossRefGoogle Scholar
  42. Lu S, Li L, Yi X, Joshi CP, Chiang VL (2008) Differential expression of three Eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. J Exp Bot 59:681–695PubMedCrossRefGoogle Scholar
  43. Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245PubMedCrossRefGoogle Scholar
  44. McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye Z-H (2010) The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol 51:1084–1090PubMedCrossRefGoogle Scholar
  45. Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300PubMedCrossRefGoogle Scholar
  46. Mizrachi E, Hefer C, Ranik M, Joubert F, Myburg A (2010) De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics 11:681PubMedCrossRefGoogle Scholar
  47. Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25PubMedCrossRefGoogle Scholar
  48. Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257PubMedCrossRefGoogle Scholar
  49. Neale DB, Ingvarsson PK (2008) Population, quantitative and comparative genomics of adaptation in forest trees. Curr Opin Plant Biol 11(2):149–155PubMedCrossRefGoogle Scholar
  50. Nei M (2007) The new mutation theory of phenotypic evolution. Proc Natl Acad Sci USA 104:12235–12242Google Scholar
  51. Nei M, Li W (1979) Mathematical model for studying genetic variation in term of restriction endonucleases. Proc Natl Acad Sci USA 76:5267–5273Google Scholar
  52. Novaes E, Drost D, Farmerie W, Pappas G, Grattapaglia D, Sederoff R, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312PubMedCrossRefGoogle Scholar
  53. Pauli S, Rothnie HM, Chen G, He X, Hohn T (2004) The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 78:12120–12128PubMedCrossRefGoogle Scholar
  54. Payn K, Dvorak W, Janse B, Myburg A (2008) Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genet Genomes 4:519–530CrossRefGoogle Scholar
  55. Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–U1082PubMedCrossRefGoogle Scholar
  56. Popper ZA, Michel G, Herve C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590PubMedCrossRefGoogle Scholar
  57. Pryor LD, Johnson LAS (1971) A classification of the eucalypts. Australian National University, CanberraGoogle Scholar
  58. Pyo H, Demura T, Fukuda H (2007) TERE; a novel cis-element responsible for a coordinated expression of genes related to programmed cell death and secondary wall formation during differentiation of tracheary elements. Plant J 51:955–965PubMedCrossRefGoogle Scholar
  59. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489PubMedCrossRefGoogle Scholar
  60. Ranik M, Myburg AA (2006) Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis. Tree Physiol 26:545–556PubMedCrossRefGoogle Scholar
  61. Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energ 35:14–22CrossRefGoogle Scholar
  62. Regalbuto JR (2009) Cellulosic biofuels: Got gasoline? Science 325:822–824PubMedCrossRefGoogle Scholar
  63. Reineke AR, Bornberg-Bauer E, Gu J (2011) Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes. Nucleic Acids Res 39:6029–6043PubMedCrossRefGoogle Scholar
  64. Roberts AW, Bushoven JT (2007) The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Mol Bio 63:207–219CrossRefGoogle Scholar
  65. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  66. Samuga A, Joshi CP (2004) Differential expression patterns of two new primary cell wall-related cellulose synthase cDNAs, PtrCesA6 and PtrCesA7 from aspen trees. Gene 334:73–82PubMedCrossRefGoogle Scholar
  67. Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635PubMedCrossRefGoogle Scholar
  68. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucl Acids Res 18:6097–6100PubMedCrossRefGoogle Scholar
  69. Shi R, Sun Y-H, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163PubMedCrossRefGoogle Scholar
  70. Steane DA, McKinnon GE, Vaillancourt RE, Potts BM (1999) ITS sequence data resolve higher level relationships among the eucalypts. Mol Phylogenet Evol 12:215–223PubMedCrossRefGoogle Scholar
  71. Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattagalia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59:206–224PubMedCrossRefGoogle Scholar
  72. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  73. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83PubMedCrossRefGoogle Scholar
  74. Tanaka T, Koyanagi KO, Itoh T (2009) Highly diversified molecular evolution of downstream transcription start sites in rice and Arabidopsis. Plant Physiol 149:1316–1324PubMedCrossRefGoogle Scholar
  75. Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci U S A 102:7203–7208PubMedCrossRefGoogle Scholar
  76. Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252PubMedCrossRefGoogle Scholar
  77. Taylor NG, Gardiner JC, Whiteman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11:329–338CrossRefGoogle Scholar
  78. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CESA proteins essential for cellulose synthesis. Proc Natl Acad Sci U S A 100:1450–1455PubMedCrossRefGoogle Scholar
  79. Than C, Ruths D, Nakhleh L (2008) PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinforma 9:322CrossRefGoogle Scholar
  80. Thomas-Chollier M, Sand O, Turatsinze J-V, Rs J, Defrance M, Vervisch E, Brohee S, van Helden J (2008) RSAT: regulatory sequence analysis tools. Nucleic Acids Res 36:W119–W127PubMedCrossRefGoogle Scholar
  81. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  82. Tjaden G, Edwards JW, Coruzzi GM (1995) Cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase. Plant Physiol 108:1109–1117PubMedCrossRefGoogle Scholar
  83. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Regnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23:137–144PubMedCrossRefGoogle Scholar
  84. Vandepoele K, Quimbaya M, Casneuf T, De Veylder L, Van de Peer Y (2009) Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 150:535–546CrossRefGoogle Scholar
  85. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276PubMedCrossRefGoogle Scholar
  86. Wijaya E, Yiu S-M, Son NT, Kanagasabai R, Sung W-K (2008) MotifVoter: a novel ensemble method for fine-grained integration of generic motif finders. Bioinformatics 24:2288–2295PubMedCrossRefGoogle Scholar
  87. Wu A-M, Hu J, Liu J-Y (2009) Functional analysis of a cotton cellulose synthase A4 gene promoter in transgenic tobacco plants. Plant Cell Rep 28:1539–1548PubMedCrossRefGoogle Scholar
  88. Yamamoto YY, Ichida H, Abe T, Suzuki Y, Sugano S, Obokata J (2007) Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis. Nucleic Acids Res 35:6219–6226PubMedCrossRefGoogle Scholar
  89. Yazaki J, Kishimoto N, Nagata Y, Ishikawa M, Fujii F, Hashimoto A, Shimbo K, Shimatani Z, Kojima K, Suzuki K, Yamamoto M, Honda S, Endo A, Yoshida Y, Sato Y, Takeuchi K, Toyoshima K, Miyamoto C, Wu J, Sasaki T, Sakata K, Yamamoto K, Iba K, Oda T, Otomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S (2003) Genomics approach to abscisic acid- and gibberellin-responsive genes in rice. DNA Res 10:249–261PubMedCrossRefGoogle Scholar
  90. Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol 9:99PubMedCrossRefGoogle Scholar
  91. Zhao L, Lu L, Zhang L, Wang A, Wang N, Liang Z, Lu X, Tang K (2009) Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J Biosci 34:71–83PubMedCrossRefGoogle Scholar
  92. Zhong R, Lee C, Ye Z-H (2010) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends Plant Sci 15:625–632PubMedCrossRefGoogle Scholar
  93. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicky M. Creux
    • 1
  • Minique H. De Castro
    • 1
  • Martin Ranik
    • 1
  • Mathabatha F. Maleka
    • 1
  • Alexander A. Myburg
    • 1
  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa

Personalised recommendations