Tree Genetics & Genomes

, Volume 9, Issue 1, pp 307–320

Evidence of heterogeneous selection on quantitative traits of Prosopis flexuosa (Leguminosae) from multivariate QST–FST test

  • M. Rosario Darquier
  • Cecilia F. Bessega
  • Mariano Cony
  • Juan C. Vilardi
  • Beatriz O. Saidman
Original Paper

Abstract

Prosopis flexuosa is an arboreal Leguminosae that grows in arid and semiarid temperate zones of Argentina, in the Monte eco-region. It is a promising native forest species for recovering arid and semiarid regions because it plays an important role in erosion control as well as in soil fertility. Furthermore, it provides diverse economical resources. The main challenge to the forestry sector is finding a balance between production and forest protection. For this purpose, it is necessary to gather information about genetic parameters. In this study, we measured the distribution of the variation of 14 quantitative traits in an experimental half-sib stand, where families are representative of hierarchically structured populations. We applied a multivariate extension of the classical QST–FST neutrality test to determine the relative importance of drift versus selection in the distribution of genetic variability. We found strong evidence that different selective regimes act on different traits and that selection favors different optima in each sampling site. The selection to different optima is much stronger among than within provenances. This result helps explain the possible causes for the regional variation observed in P. flexuosa and to define the management units and the evolutionarily significant units for this species.

Keywords

Multivariate QST Quantitative traits Molecular markers FST Prosopis flexuosa Forest trees Selection 

References

  1. Acosta M, Oliva L, Abril A (1994) Colección de Rhizobios de Prosopis arbóreos en la zona semiárida de la provincia de Córdoba (Argentina). Ciencia del Suelo 12:38–40Google Scholar
  2. Alvarez JA, Villagra PE (2009) Prosopis flexuosa D.C (Fabeaceae, mimosoideade). Kurtziana 35(1):47–61Google Scholar
  3. Bassam BJ, Caetano-Anollés G, Greshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:81–84CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300Google Scholar
  5. Bessega C, Ferreyra L, Julio N, Montoya S, Saidman BO, Vilardi JC (2000a) Mating system parameters in species of genus Prosopis (Leguminosae). Hereditas 132(1):19–27PubMedCrossRefGoogle Scholar
  6. Bessega C, Ferreyra L, Vilardi JC, Saidman BO (2000b) Unexpected low genetic differentiation among allopatric species of section Algarobia of Prosopis (Leguminosae). Genetica 109:255–266PubMedCrossRefGoogle Scholar
  7. Bessega C, Saidman BO, Darquier MR, Ewens M, Sánchez L, Rozenberg P, Vilardi JC (2009) Consistency between marker and genealogy-based heritability estimates in an experimental stand of Prosopis alba (Leguminosae). Am J Bot 96:458–465PubMedCrossRefGoogle Scholar
  8. Bessega C, Saidman BO, Darquier MR, Ewens M, Felker P, Vilardi JC (2010) Accuracy of dominant markers for estimation of relatedness and heritability in an experimental stand of Prosopis alba (Leguminosae). Tree Genet Genome 7:103–115CrossRefGoogle Scholar
  9. Bessega C, Pometti CL, Ewens M, Saidman BO, Vilardi JC (2011) Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters. Tree Genet Genome. doi:10.1007/s11295-011-0439-6
  10. Black WC IV (1996) Fortran programs for the analysis of RAPD-PCR markers in populations. Colorado State University, Ft. Collins, COGoogle Scholar
  11. Box GEP, Cox DR (1964) An analysis of transformations (with discussion). J R Stat Soc Ser B 26:211–252Google Scholar
  12. Brizuela MM, Burghardt AD, Tanoni D, Palacios RA (2000) Estudio de la variación morfológica de Prosopis flexuosa en tres procedencias y su manifestación en cultivos bajo condiciones uniformes. Multequina 9:07–15Google Scholar
  13. Burghardt AD, Espert SM, Braun-Wilke SH (2004) Variabilidad genética en Prosopis ferox (Mimosaceae). Darviniana 42(1–4):31–36Google Scholar
  14. Burkart A (1976) A monograph of the genus Prosopis. J Arn Arb 57: 3–4Google Scholar
  15. Burkart R, BarbaroN, Sánchez RO, Gómez DA (1999) Ecorregiones de la Argentina. Administración de Parques Nacionales PRODIAGoogle Scholar
  16. Chapuis E, Martin G, Goudet J (2008) Effects of selection and drift on G matrix evolution in a heterogeneous environment: a multivariate Q stF st test with the freshwater snail Galba truncatula. Genetics 180:2151–2161PubMedCrossRefGoogle Scholar
  17. Chenoweth SF, Blows MW (2008) Qst meets the G matrix: the dimensionality of adaptive divergence in multiple correlated quantitative traits. Evolution 62:1437–1449PubMedCrossRefGoogle Scholar
  18. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I—one-table methods. R News 4:5–10Google Scholar
  19. Cony MA (1996) Genetic variability in Prosopis flexuosa D.C. a native tree of Monte phytogeography province, Argentina. For Ecol Manage 87:41–49CrossRefGoogle Scholar
  20. Cony MA (1993) Programa de consetvaci6n y mejoramiento de especies de1 genera Prosopis en la Provincia Fitogeografica del Monte, Argentina. In: Contibuciones Mendocinas a la Quinta Reunion Regional para America Latina y el Caribe, de la Red de Forestaci0n de1 CIID. Unidades de Botanica y Fisiologia Vegetal, IADIZA, pp. 37–72Google Scholar
  21. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. ISBN 3-900051-07-0. Available from: http://www.R-project.org
  22. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20Google Scholar
  23. Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7(2):47–52Google Scholar
  24. Edelaar P, Burraco P, Gomez-Mestre I (2011) Comparison between Q ST and F ST—how wrong have we been? Mol Ecol 2:4830–4839CrossRefGoogle Scholar
  25. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  26. Falconer DS, Mackay TFC (1989) Introduction to quantitative genetics, 3rd edn. Longman, Harlow, UKGoogle Scholar
  27. FAO, FLD, IPGRI (2004) Forest genetic resources conservation and management vol. 1: overview, concepts and some systematic approaches. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  28. Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F statistics. Mol Ecol Notes 5:184–186. http://www.unil.ch/popgen/softwares/hierfstat.htm
  29. Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manage 197:323–335CrossRefGoogle Scholar
  30. Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer, Sunderland, MAGoogle Scholar
  31. Hedrick PW (2000) Genetics of populations (2nd edn). Jones and Bartlett Publishers, Sudbury, MAGoogle Scholar
  32. Kimura M (1983) The neutral theory of molecular evolution. Evolution of Genes and Proteins Sinauer, Sunderland, MACrossRefGoogle Scholar
  33. Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philos Trans R Soc Lond B Biol Sci 359:873–890PubMedCrossRefGoogle Scholar
  34. Lande R (1992) Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution 46:381–389CrossRefGoogle Scholar
  35. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226CrossRefGoogle Scholar
  36. Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17PubMedGoogle Scholar
  37. Lopez-Fanjul C, Fernandez A, Toro MA (2007) The effect of dominance on the use of the Q ST −F ST contrasts to detect natural selection on quantitative traits. Genetics 176:725–727PubMedCrossRefGoogle Scholar
  38. Lynch M, Walsh B (1998) Genetics and analyses of quantitative traits. Sinauer, Sunderland, MAGoogle Scholar
  39. Mantován NG (2002) Early growth differentiation among Prosopis flexuosa D.C provenances from the Monte phytogeographic province, Argentina. New For 23:19–30CrossRefGoogle Scholar
  40. Martin G, Chapuis E, Goudet J (2008) Multivariate Q ST –F ST comparisons: a neutrality test for the evolution of the G matrix in structured populations. Genetics 180:2135–2149PubMedCrossRefGoogle Scholar
  41. Mc Guigan K (2006) Studying phenotypic evolution using multivariate quantitative genetics. Mol Ecol 15:883–896CrossRefGoogle Scholar
  42. Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903CrossRefGoogle Scholar
  43. Morello J, Crudelli N, Saraceno M (1971) Los vinalares de Formosa, República Argentina. Serie Fitogeográfica Nº 11. INTA. Pp. 111Google Scholar
  44. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Tree 9:373–375PubMedGoogle Scholar
  45. Nagylaki T (1998) Fixation indices in subdivided populations. Genetics 148:1325–1332PubMedGoogle Scholar
  46. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  47. O’Hara RB, Merilä J (2005) Bias and precision in QST estimates: problems and some solutions. Genetics 171:1331–1339PubMedCrossRefGoogle Scholar
  48. Otha T (1982) Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc Natl Acad Sci 79:1940–1944CrossRefGoogle Scholar
  49. Ovaskainen O, Karhunrn M, Zheng CH, Cano Arias JM, Merilä J (2011) A new method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics 189:621–632PubMedCrossRefGoogle Scholar
  50. Palacios RA, Bravo LD (1981) Hibridación natural en Prosopis (Leguminosae) en la Región Chaqueña Argentina. Evidencias morfológicas y cromatográficas. Darwiniana 23:3–35Google Scholar
  51. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team (2011) nlme: Linear and Nonlinear Mixed Effects Models. R PackageGoogle Scholar
  52. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55(6):1095–1103PubMedGoogle Scholar
  53. Rogers AR (1986) Population differences in quantitative characters as opposed to gene frequencies. Am Nat 127:729–730CrossRefGoogle Scholar
  54. Roig FA (1993) Aportes a la Etnobotánica del Género Prosopis. In: Unidades de Botánica y Fisiología vegetal, IADIZA (eds) Contribuciones Mendocinas a la quinta Reunión Regional para América Latina y el Caribe de la Red de Forestación del CIID. pp. 99–121Google Scholar
  55. Sæether SA, Fiske P, Kalas JA, Kuresoo A, Luiguoe L, Piertney SA, Sahlaman T, Höglund J (2007) Inferring local adaptation from Q ST –F ST comparisons: neutral genetic and quantitative trait variation in European populations of great snipe. J Evol Biol 20:1563–1576CrossRefGoogle Scholar
  56. Saidman BO, Vilardi JC (1987) Analysis of the genetic similarities among seven species of Prosopis (Leguminosae: Mimosoideae). Theoretical App Genet 75:109–116Google Scholar
  57. Saidman BO, Vilardi JC, Pocovi MI, Acreche N (1996) Genetic divergence among species of the section Strombocarpa genus Prosopis (Leguminosae). J Genet 75:139–149CrossRefGoogle Scholar
  58. Saidman BO, Vilardi JC, Montoya S, Dieguez MJ, Hopp HE (1998a) Molecular markers: a tool for the understanding of the relationships among species of Prosopis (Leguminosae, Mimosoidae). In: Puri S (ed) Tree improvement: applied research and technology transfer. Science Publishers Inc, U. S. A, pp 311–324, Ch 21Google Scholar
  59. Saidman BO, Bessega C, Ferreyra L, Vilardi JC (1998b) Random amplified polymorphic DNA (RAPDS) variation in hybrid swarms and pure populations of genus Prosopis. In: Bruns S, Mantell S, Tragärdh C, Viana AV (eds) Recent advances in biotechnology for tree conservation and management. International Foundation for Sciences, Stockholm, pp 122–134, ISBN: 91 85798 460Google Scholar
  60. Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774CrossRefGoogle Scholar
  61. Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135:367–374PubMedGoogle Scholar
  62. Stean DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of forest tree, Eucaliptus globules (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genome 2:30–38CrossRefGoogle Scholar
  63. Templeton AR (1989) The meaning of species and speciation: a genetic perspective. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates Inc, Sunderland, Massachusetts, pp 3–27Google Scholar
  64. Trevor P, Schluter D (1991) On the low heritability of life-history traits. Evolution 45(4):853–861CrossRefGoogle Scholar
  65. Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, BelgiumGoogle Scholar
  66. Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourthth edn. Springer, New York, ISBN 0-387-95457-0CrossRefGoogle Scholar
  67. Verga A, Mottura M, Melchiorre M, Jouseau J, Carranza C, Ledesma M, Recalde D, Tomalino L, Mendoza S, Vega R (2005) El Proyecto Algarrobo del INTA IDIA XXI(8):195–200Google Scholar
  68. Verga A, López Lauenstein D, López C, Navall M, Joseau J, Gómez C, Royo O, Degano W, Marcó M (2009) Caracterización morfológica de los algarrobos (Prosopis sp.) en las regiones fitogeográficas Chaqueña y Espinal norte de Argentina. Quebracho 17(1,2):31–40Google Scholar
  69. Wright S (1951) The genetic structure of populations. Annu Eugenics 15:323–354CrossRefGoogle Scholar
  70. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8(6):907–913PubMedCrossRefGoogle Scholar
  71. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • M. Rosario Darquier
    • 1
    • 2
  • Cecilia F. Bessega
    • 1
    • 2
  • Mariano Cony
    • 2
    • 3
  • Juan C. Vilardi
    • 1
    • 2
  • Beatriz O. Saidman
    • 1
    • 2
  1. 1.Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto Argentino de investigaciones de las zonas Áridas (IADIZA), Centro científico tecnológico (CCT)MendozaArgentina

Personalised recommendations