Tree Genetics & Genomes

, Volume 8, Issue 5, pp 1123–1134 | Cite as

Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.)

  • Paula Marchelli
  • Peter E. Smouse
  • Leonardo A. Gallo
Original Paper


The mating system (outcrossing, selfing, and biparental inbreeding) and the extent of pollen flow are two of the most important genetic features that determine the genetic structure of plant populations, and both are crucial for the design of conservation strategies. The objectives here were to estimate mating system parameters and to fit the pollen dispersal kernel for the southern beech, Nothofagus nervosa. We sampled 25 mothers and 372 progeny from two stands in the Tromen Lake region of Argentina. We registered spatial positions of the maternal trees, and genotyped mothers and offspring for five simple sequence repeat markers.

We estimated single-locus (t s = 0.95) and multilocus (t m = 0.99) outcrossing rates and biparental inbreeding (t m-t s = 0.04). The species is strongly outcrossing, but correlated paternity within maternal sibships (r p = 0.10) indicates that each maternal parent is sampling a different and restricted array of pollen donors. We used two protocols (twogener and kindist) to fit an exponential power dispersal kernel to the structure of pollen clouds sampled by different mothers. The estimated effective number of pollen donors contributing to a single mother was N ep = 9.9. The twogener and kindist analyses yielded slightly different estimates, but both indicated short average distances for pollen dispersal (<35 m), indicating that the dispersal kernel was strongly leptokurtic (β = 0.36). While short-distance pollen dispersal predominates, there remains a nontrivial probability of long-distance dispersal. The results are discussed in the context of ongoing conservation and management programs.


Gene flow Outcrossing rates kindist twogener Patagonian forests 



We thank A. Martínez Meier and M. Millerón for field assistance, A. Martínez for nursery help, M. Millerón and C. Soliani for laboratory assistance, J.E. Gayone for computational help, and J.J. Robledo-Arnuncio and F. Austerlitz for helpful discussions on data analysis. We also thank a pair of anonymous reviewers for helpful commentary of the manuscript. The study was financed by the British Ecological Society Small Project Grant No. 2258, and PIP CONICET 5451. PES was funded by NJAES/USDA-17111 and NSF-DEB-0514956.

Supplementary material

11295_2012_500_MOESM1_ESM.doc (398 kb)
ESM 1 (DOC 398 kb)


  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. U.S. Government Printing Office, Washington, DCGoogle Scholar
  2. Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29:148–161CrossRefGoogle Scholar
  3. Austerlitz F, Smouse PE (2001) Two-generation analysis of pollen flow across a landscape; II. Relation between Φ(ft), pollen dispersal and interfemale distance. Genetics 157:851–857PubMedGoogle Scholar
  4. Austerlitz F, Smouse PE (2002) Two-generation analysis of pollen flow across a landscape: IV. Estimating the dispersal parameter. Genetics 161:355–363PubMedGoogle Scholar
  5. Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954Google Scholar
  6. Austerlitz F, Dutech C, Smouse PE, Davis F, Sork VL (2007) Estimating anisotropic pollen dispersal: a case study in Quercus lobata. Heredity 99:193–204Google Scholar
  7. Azpilicueta MM, Caron H, Bodenes C, Gallo L (2004) SSR markers for analysing South American Nothofagus species. Silvae Genet 53:240–243Google Scholar
  8. Bacles CFE, Lowe AJ, Ennos R (2006) Effective seed dispersal across a fragmented landscape. Science 311:628PubMedCrossRefGoogle Scholar
  9. Bittencourt JV, Sebbenn AM (2008) Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and twogener analysis. Conserv Genet 9:855–868CrossRefGoogle Scholar
  10. Burczyk J, Adams WT, Shimizu JY (1996) Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuata Lemmon.) stand. Heredity 77:251–260Google Scholar
  11. Burczyk J, Lewandowski A, Chalupka W (2004) Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). For Ecol Manag 197:39–48CrossRefGoogle Scholar
  12. Chauchard L, Bava JO, Castañeda S, Laclau P, Loguercio GA, Pantaenius P, Rusch V (2012) Manual para las buenas prácticas forestales en bosques nativos de Nordpatagonia. Ministerio de Agricultura, ganadería y Pesca, Presidencia de la Nación. Argentina, p 122Google Scholar
  13. Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152:204–224PubMedCrossRefGoogle Scholar
  14. De-Lucas AI, Robledo-Arnuncio JJ, Hidalgo E, Gonzalez-Martinez SC (2008) Mating system and pollen gene flow in Mediterranean maritime pine. Heredity 100:390–399PubMedCrossRefGoogle Scholar
  15. Degen B, Bandou E, Caron H (2004) Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity 93:585–591PubMedCrossRefGoogle Scholar
  16. Dettmann ME, Pocknall DT, Romero EJ, Zamaloa MC (1990) Nothofagidites Erdtman ex Potoni‚ 1960; a catalogue of species with notes on the paleogeographic distribution of Nothofagus Bl. (Southern Beech). New Zealand Geological Survey, Lower HuttGoogle Scholar
  17. Di-Giovanni F, Kevan PG (1991) Factors affecting pollen dynamics and its importance to pollen contamination: a review. Can J For Res 21:1155–1170CrossRefGoogle Scholar
  18. Dick CW, Etchelecu G, Austerlitz F (2003) Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol Ecol 12:753–764PubMedCrossRefGoogle Scholar
  19. Donoso C (1993) Bosques templados de Chile y Argentina. Variaci¢n, Estructura y Dinámica. Ecología Forestal. Editorial Universitaria, ChileGoogle Scholar
  20. Donoso C, Lara A (1995) Utilización de los bosques nativos en Chile: pasado, presente y futuro. In: Armesto JJ, Villagran C, Arroyo KM (eds) Ecología de los Bosques nativos de Chile. Editorial Universitaria, Santiago, pp 363–388Google Scholar
  21. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  22. Dutech C, Sork VL, Irwin AJ, Smouse PE, Davis F (2005) Gene flow and fine-scale genetic structure in a wind-pollinated tree species, Quercus lobata (Fagaceaee). Am J Bot 92:252–261PubMedCrossRefGoogle Scholar
  23. Dyer RJ, Sork VL (2001) Pollen pool heterogeneity in shortleaf pine. Pinus echinata Mill Mol Ecol 10:859–866Google Scholar
  24. Fernandez-Manjarres JF, Idol J, Sork VL (2006) Mating patterns of black oak Quercus velutina (Fagaceae) in a Missouri oak-hickory forest. J Hered 97:451–455PubMedCrossRefGoogle Scholar
  25. Gallo LA, Pastorino MJ (2010) Evidence of genetic drift in neutral and adaptive genome. In: Evoltree conference “Forest ecosystem genomics and adaptation,” San Lorenzo del Escorial, Madrid, España. INIAGoogle Scholar
  26. Gallo L, Donoso C, Marchelli P, Donoso P (2004) Variación en Nothofagus nervosa (Phil.) Dim. et Mil (N. alpina, N. procera). In: Donoso C, Premoli AC, Gallo L, Ipinza R (eds) Variación intraespecífica en especies arboreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Santiago, pp 115–144Google Scholar
  27. Gallo LA, Marchelli P, Chauchard L, Penalba MG (2009) Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests. Conserv Biol 23:895–898PubMedCrossRefGoogle Scholar
  28. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  29. Hill RS, Read J (1991) A revised infrageneric classification of Nothofagus (Fagaceae). Bot J Linn Soc 105:37–72CrossRefGoogle Scholar
  30. Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci USA 97:7037–7042PubMedCrossRefGoogle Scholar
  31. Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523PubMedCrossRefGoogle Scholar
  32. Klein EK, Lavigne C, Gouyon PH (2006) Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecol 6:3. doi: 10.1186/1472-6785-6-3 PubMedCrossRefGoogle Scholar
  33. Koenig WD, Ashley MV (2003) Is pollen limited? The answer is blowin’ in the wind. TREE 18:157–159Google Scholar
  34. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189CrossRefGoogle Scholar
  35. Lindgren D, Paule L, Shen XH, Yazdani R, Segerström U, Wallin JE, Lejdebro ML (1995) Can viable pollen carry Scots pine genes over long distances? Grana 34:64–69CrossRefGoogle Scholar
  36. Manel S, Gaggiotti OE, Waples RS (2005) Assignments methods: matching biological questions with appropriate techniques. Tree 20:136–142PubMedGoogle Scholar
  37. Marchelli P, Gallo LA (1999) Annual and geographic variation in seed traits of Argentinean populations of southern beech Nothofagus nervosa (Phil.) Dim. et Mil. For Ecol Manag 121:239–250CrossRefGoogle Scholar
  38. Marchelli P, Gallo LA (2001) Genetic diversity and differentiation in a southern beech subjected to introgressive hybridization. Heredity 87:284–293PubMedCrossRefGoogle Scholar
  39. Marchelli P, Gallo LA (2004) The role of glaciation, fragmentation and hybridization in shaping the distribution of the genetic variation in a Patagonian southern beech. J Biogeogr 31:451–460CrossRefGoogle Scholar
  40. Marchelli P, Gallo L (2006) Multiple ice-age refugia in a southern beech from southern South America as revealed by chloroplast DNA markers. Conserv Genet 7:591–603CrossRefGoogle Scholar
  41. Marchelli P, Caron H, Azpilicueta MM, Gallo L (2008) Primer note: a new set of highly polymorphic nuclear microsatellite markers for Nothofagus nervosa and related South American species. Silvae Genet 57:82–85Google Scholar
  42. Markgraf V, D’Antoni HI (1978) Pollen flora of Argentina. Modern spore and pollen types of Pteridphyta, Gymnospermae and Angiospermae. University of Arizona Press, TucsonGoogle Scholar
  43. Murawski DA, Hamrick JL (1991) The effect of the density of flowering individuals on the mating systems of nine tropical tree species. Heredity 67:167–174CrossRefGoogle Scholar
  44. Nason JD, Herre EA, Hamrick JL (1998) The breeding structure of a tropical keystone plant resource. Nature 391:385–687CrossRefGoogle Scholar
  45. Neale DB, Adams J (1985) The mating system in natural and shelterwood stands of Douglas-fir. Theor Appl Genet 71:201–207Google Scholar
  46. Neel JV, Ward RH (1972) The genetic structure of a tribal population, the Yanomama indians:VI. Analysis by F-statistics (including comparison with the Makiritare and Xavante). Genetics 72:639–666PubMedGoogle Scholar
  47. Nielsen LR, Kjaer ED (2010) Gene flow and mating patterns in individuals of wych elm (Ulmus glabra) in forest and open land after the influence of Dutch elm disease. Conserv Genet 11:257–268CrossRefGoogle Scholar
  48. O’Connell LM, Mosseler A, Rajora OM (2006) Impacts of forest fragmentation on the mating system and genetic diversity of white spruce (Picea glauca) at the landscape level. Heredity 97:418–426PubMedCrossRefGoogle Scholar
  49. Oddou-Muratorio S, Petit RJ, Le Guerroue B, Guesnet D, Demesure B (2001) Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55:1123–1135PubMedGoogle Scholar
  50. Oddou-Muratorio S, Klein EK, Austerlitz F (2005) Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz: II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol 14(14):4441–4452PubMedCrossRefGoogle Scholar
  51. Oddou-Muratorio S, Klein EK, Demesure-Musch B, Austerlitz F (2006) Real-time patterns of pollen flow in the wild-service tree, Sorbus torminalis (Rosaceae): III. Mating patterns and the ecological maternal neighborhood. Am J Bot 93:1650–1659PubMedCrossRefGoogle Scholar
  52. Oddou-Muratorio S, Bontemps A, Klein EK, Chybicki IJ, Vendramin GG, Suyama Y (2010) Comparison of direct and indirect genetic methods for estimating seed and pollen dispersal in Fagus sylvatica and Fagus crenata. For Ecol Manag 259:2151–2159CrossRefGoogle Scholar
  53. Oddou-Muratorio S, Klein EK, Vendramin GG, Fady B (2011) Spatial vs. temporal effects on demographic and genetic structures: the roles of dispersal, masting and differential mortality on patterns of recruitment in Fagus sylvatica. Mol Ecol 20:1997–2010PubMedCrossRefGoogle Scholar
  54. Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70:329–338CrossRefGoogle Scholar
  55. Pakkad G, Ueno S, Yoshimaru H (2008) Gene flow pattern and mating system in a small population of Quercus semiserrata Roxb. (Fagaceae). For Ecol Manag 255:3819–3826CrossRefGoogle Scholar
  56. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  57. Petit JR, Hampe A (2006) Some evolutionary consequences of being a tree. Ann Rev Ecol Evol Syst 37:187–214CrossRefGoogle Scholar
  58. Pluess AR, Sork VL, Dolan B, Davis FW, Grivet D, Merg K, Papp J, Smouse PE (2009) Short distance pollen movement in a wind-pollinated tree, Quercus lobata (Fagaceae). For Ecol Manag 258:735–744CrossRefGoogle Scholar
  59. Puntieri J, Grosfeld JE, Heuret P (2009) Preformation and distribution of staminate and pistillate flowers in growth un its of Nothofagus alpina and N. obliqua (Nothofagaceae). Ann Bot 103:411–421PubMedCrossRefGoogle Scholar
  60. Rieseberg LH, Burke JM (2001) The biological reality of species: gene flow, selection, and collective evolution. Taxon 50:47–67CrossRefGoogle Scholar
  61. Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228PubMedCrossRefGoogle Scholar
  62. Riveros M, Parades MA, Rosas MT, Cardenas E, Armesto JJ, Arroyo KM, Palma B (1995) Reproductive biology in species of the genus Nothofagus. Environ Exp Bot 35:519–524CrossRefGoogle Scholar
  63. Robledo-Arnuncio JJ, Gil L (2005) Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94(1):13–22PubMedCrossRefGoogle Scholar
  64. Robledo-Arnuncio JJ, Garcia C (2007) Estimation of the seed dispersal kernel from exact identification of source plants. Mol Ecol 16:5098–5109PubMedCrossRefGoogle Scholar
  65. Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2006) A new method of estimating the pollen dispersal curve independently of effective density. Genetics 173:1033–1045PubMedCrossRefGoogle Scholar
  66. Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2007) POLDISP: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7:763–766CrossRefGoogle Scholar
  67. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62CrossRefGoogle Scholar
  68. Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497PubMedCrossRefGoogle Scholar
  69. Schoen DJ, Clegg MT (1986) Monte Carlo studies of plant mating system estimation models: the one-pollen parent and mixed mating models. Genetics 112:927–945PubMedGoogle Scholar
  70. Smouse PE, Sork VL (2004) Measuring pollen flow in forest trees: an exposition of alternative approaches. For Ecol Manag 197:21–38CrossRefGoogle Scholar
  71. Smouse PE, Neel JV, Liu W (1983) Multiple-locus departures from panmictic equilibrium within and between village gene pools of Amerindian tribes at different stages of agglomeration. Genetics 104:133–153PubMedGoogle Scholar
  72. Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape: I. Male gamete heterogeneity among females. Evolution 55:260–271PubMedGoogle Scholar
  73. Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landsc Ecol 21:821–836CrossRefGoogle Scholar
  74. Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez JF, Kuhn B (2002) Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668PubMedCrossRefGoogle Scholar
  75. Sork VL, Smouse PE, Apsit VJ, Dyer RJ, Wetfall RD (2005) A two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks. Am J Bot 92:262–271PubMedCrossRefGoogle Scholar
  76. Streiff R, Labbe T, Bacilieri R, Steinkellner J, Grössl J, Kremer A (1998) Within population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7:317–328CrossRefGoogle Scholar
  77. Streiff D, Lexer S, Gloessl K (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol 8:831–841CrossRefGoogle Scholar
  78. Torres CD, Puntieri J, Stecconi M (2012) Flower and seed production as affected by axis category and shoot size in two Patagonian Nothofagus species. Botany, in pressGoogle Scholar
  79. Valbuena-Carabana M, Gonzalez-Martinez SC, Sork VL, Collada C, Soto A, Goicoechea PG, Gil L (2005) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity 95:457–465PubMedCrossRefGoogle Scholar
  80. Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Paula Marchelli
    • 1
    • 2
  • Peter E. Smouse
    • 3
  • Leonardo A. Gallo
    • 1
  1. 1.Grupo Genética Ecológica y Mejoramiento ForestalINTA EEA BarilocheSan Carlos de BarilocheArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Department of Ecology, Evolution and Natural Resources, School of Biological and Environmental SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations