Tree Genetics & Genomes

, Volume 8, Issue 2, pp 379–389

Inheritance of chilling and heat requirements for flowering in almond and QTL analysis

  • Raquel Sánchez-Pérez
  • Federico Dicenta
  • Pedro Martínez-Gómez
Original Paper


The chilling and heat requirements and flowering time were studied, for 2 years, in an almond progeny from the cross between the late-flowering French selection “R1000” and the early-flowering Spanish “Desmayo Largueta”. These three temperature-dependent traits showed quantitative inheritance, although for chilling requirements and flowering time a major gene could be involved, modified by other minor genes. The results indicate that flowering time is mainly a consequence of the chilling requirements; heat requirements having a smaller effect. In agreement with the genetic findings, a significant Quantitative Trait Loci (QTL) for chilling requirements was found in G4 together with other minor QTLs in G1, G3, and G7. For heat requirements, two QTLs in G2 and G7 were identified. The results also show the high influence of temperature in the expression of the three traits and their QTL analyses. In addition, QTL analysis for flowering time allowed the identification of one significant QTL in linkage group 4 (G4) that explained most of the phenotypic variation together with other minor QTLs located in G1, G6, and G7.


Almond Endodormancy Ecodormancy Chilling requirements Heat requirements Flowering time SSRs QTLs 


  1. Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170CrossRefGoogle Scholar
  2. Alonso JM, Ansón JM, Espiau MT, Socias i Company R (2005) Determination of endodormancy break in almond flower buds by a correlation model using the average temperature of different day intervals and its application to the estimation of chill and heat requirements and blooming date. J Am Soc Hort Sci 130:308–318Google Scholar
  3. Andrés MV, Durán JM (1999) Cold and heat requirements of the apricot (Prunus armeniaca L.) tree. J Hort Sci Biotechnol 74:757–761Google Scholar
  4. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27:175–211Google Scholar
  5. Asins MJ, Mester P, García JE, Dicenta F, Carbonell E (1994) Genotype × environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers. Theor Appl Genet 89:358–369CrossRefGoogle Scholar
  6. Ballester J, Socias i Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270CrossRefGoogle Scholar
  7. Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Hered 95:436–444PubMedCrossRefGoogle Scholar
  8. Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507CrossRefGoogle Scholar
  9. Cabrera A, Kozik A, Howad W, Arús P, Iezzoni AF, van der Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562–573PubMedCrossRefGoogle Scholar
  10. Campoy JA, Ruiz D, Egea J (2011a) Dormancy in temperate fruit trees in a global warning context: a review. Sci Hort 130(2):357–372CrossRefGoogle Scholar
  11. Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011b) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat markers. Plant Mol Biol Rep 29:404–410CrossRefGoogle Scholar
  12. Chaparro J, Beckman T (2008) Detection of vegetative bud dormancy QTL in peach. HortSci 43:1269Google Scholar
  13. Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Am Soc Hort Sci 110:47–50Google Scholar
  14. Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud T, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689PubMedCrossRefGoogle Scholar
  15. Dicenta F, García JE, Carbonell EA (1993) Heritability of flowering, productivity and maturity in almond. J Hort Sci 68:113–120Google Scholar
  16. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldré F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896PubMedCrossRefGoogle Scholar
  17. Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Celton JM, Dondini L, Illa B, Quilot B, Audergon JM, Tartarin S, Arús P, Costes E, Denyoes Rotha B (2010) QTLs detection for phonological traits within the Rosaeae family. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)Google Scholar
  18. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  19. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRefGoogle Scholar
  20. Egea J, Ortega E, Martínez-Gómez P, Dicenta F (2003) Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot 50:79–85CrossRefGoogle Scholar
  21. Erez A, Couvillon GA, Hendershott CH (1979) The effect of cycle length on chilling negation by high temperatures in dormant peach leaf buds. J Am Soc Hort Sci 104:573–576Google Scholar
  22. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  23. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930PubMedCrossRefGoogle Scholar
  24. Felipe AJ (1977) Phenological states of almond (in Italian). Proceedings of the 3rd GREMPA Colloquium. Bari, Italy, pp 101–103Google Scholar
  25. Felker FC, Robitaille HA (1985) Chilling accumulation and rest of sour cherry flower buds. J Am Soc Hort Sci 110:227–232Google Scholar
  26. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × P. davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50CrossRefGoogle Scholar
  27. Grasselly C (1978) Observations sur l’utilization d’un mutant l’Amandier a’ floraison tardize dans un programme d’hybridizaiton. Ann Amel Plantes 28:685–695Google Scholar
  28. Guerriero R, Viti R, Monteleone P, Gentile M (2002) Comparison of three different methods for the evaluation of dormancy in apricot (in Italian). Frutticoltura 3:73–77Google Scholar
  29. Hagen LS, Chaib J, Fad B, Decroocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellite from apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  30. Harrington CA, Gould PJ, St. Clair JB (2010) Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecol Manag 259:798–808CrossRefGoogle Scholar
  31. Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23CrossRefGoogle Scholar
  32. Illa E, Sargeant DJ, Lopez E, Bushara J, Cestaro A, Cabrera A, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome. BMC Evol Biol 11:9PubMedCrossRefGoogle Scholar
  33. Jiménez S, Li Z, Reighard GL, Bielenberg DG (2010) Identification of genes associated with growth cessation and bud dormancy-incapable tree mutant. BMC Plant Biol 10:25PubMedCrossRefGoogle Scholar
  34. Jung S, Jiwan D, Cho I, Abbott A, Tomkins J, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76PubMedCrossRefGoogle Scholar
  35. Kester DE, Raddi P, Asay R (1977) Correlation of chilling requirements for germination, blooming and leafing within and among seedling populations of almond. J Am Soc Hort Sci 102:145–148Google Scholar
  36. Lang GA, Early JD, Martin GC, Darnel RL (1987) Endo-, para-, and eco-dormancy physiological terminology and classification for dormancy research. HortSci 22:371–377Google Scholar
  37. Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666PubMedCrossRefGoogle Scholar
  38. Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530PubMedCrossRefGoogle Scholar
  39. Liang H, Zhebentyayeva T, Olukolu B, Wide D, Reighard G, Abbott AG (2010) Comparison of gene order in the chromosome region containing a TERMINAL FLOWER 1 homolog in apricot and peach reveals microsynteny across angiosperms. Plant Sci 179:390–398CrossRefGoogle Scholar
  40. Lopes K, Sefc M, Laimer M, Da Câmara MA (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26CrossRefGoogle Scholar
  41. Luedeling E, Brown PH (2010) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411–421PubMedCrossRefGoogle Scholar
  42. Messina R, Lain O, Marrazo T, Cipriano G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  43. Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:162–163CrossRefGoogle Scholar
  44. Okie WR, Blackburn (2008) Interaction of chill and heat in peach flower bud dormancy. HortSci 43:1161–1161Google Scholar
  45. Okie WR, Blackburn (2011) Increasing chilling reduces heat requirement for floral budbreak in peach. HortSci 46:245–252Google Scholar
  46. Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828PubMedCrossRefGoogle Scholar
  47. Quero-García J, Le Dantec L, Fodor A, Reignier A, Capdevilla G, Joly J, Tauzin Y, Fouilhaux L, Dirlewanger E (2010) QTL detection for fruit quality and phonological characters in sweet cherry. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)Google Scholar
  48. Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56:3083–3092PubMedCrossRefGoogle Scholar
  49. Richardson EA, Seeley SD, Walker RD (1974) A model estimating the completion of rest for Red Haven and Elberta peach. HortSci 9:331–332Google Scholar
  50. Rodríguez J, Sherman WB, Scorza R, Wisniweski M, Okie WR (1994) ‘Evergreen’ peach, its inheritance and dormant behaviour. J Am Soc Hort Sci 119:789–792Google Scholar
  51. Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263CrossRefGoogle Scholar
  52. Sánchez-Pérez R, Ballester J, Dicenta F, Arús P, Martínez-Gómez P (2006) Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: implications for the assessment of genetic diversity and relatedness in almond. Sci Hort 108:310–316CrossRefGoogle Scholar
  53. Sánchez-Pérez R, Ortega E, Duval H, Martínez-Gómez P, Dicenta F (2007a) Inheritance and correlation of important agronomic traits in almond. Euphytica 155:381–391CrossRefGoogle Scholar
  54. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007b) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318CrossRefGoogle Scholar
  55. Sánchez-Pérez R, Howad W, Garcia-Mas J, Arús P, Martínez-Gómez P, Dicenta F (2010) Molecular markers for kernel bitterness in almond. Tree Genet Genomes 6:237–245CrossRefGoogle Scholar
  56. Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Gardiner SE, Potter D, Veilleux E (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003PubMedCrossRefGoogle Scholar
  57. Silva C, Garcia-Mas J, Sánchez AM, Arús P, Oliveira MM (2005) Looking into flowering time in almond (Prunus dulcis (Mill) D.A. Webb): the candidate gene approach. Theor Appl Genet 110:959–968PubMedCrossRefGoogle Scholar
  58. Socias i Company R, Felipe AJ, Gómez-Aparisi J (1999) A major gene for flowering time in almond. Plant Breed 118:443–448CrossRefGoogle Scholar
  59. Sosinski B, Gannavarapu M, Hager LE, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L) Batsch). Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  60. Sosinski B, Verde I, Morgante M, Rokhsar D, The International Peach Genome Initiative (2010) A first draft of the peach genome sequence and its use for genetic diversity analysis in peach. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)Google Scholar
  61. Tabuenca MC (1972) Chilling requirements in almond (in Spanish). Anal Estación Exp Aula Dei 11:325–329Google Scholar
  62. Tavassolian I, Rabiei G, Gregory D, Mnejja M, Wirthensohn MG, Hunt PW, Gibson JP, Ford CM, Sedgley M, Wu S-B (2010) Construction of an almond linkage map in an Australian population Nonpareil × Lauranne. BMC Genomics 11:551–561PubMedCrossRefGoogle Scholar
  63. Testolin R, Messina R, Lain O, Marrazo T, Huang G, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461CrossRefGoogle Scholar
  64. Tzonev R, Erez A (2003) Inheritance of chilling requirement for dormancy completion in apricot vegetative buds. Acta Hort 622:429–436Google Scholar
  65. Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Heredity 93:352–358CrossRefGoogle Scholar
  66. Yamamoto T, Mochida K, Imai T, Shi IZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–302CrossRefGoogle Scholar
  67. Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 4:1–8Google Scholar
  68. Zhebentyayeva T, Fan S, Olukolu B, Barakat A, Leida C, Badenes ML, Bielenberg D, Reighard G, Okie W, Abbott AG (2010) From genetics to epigenetics in control of chilling requirements and flowering time in peach. 5th International Rosaceae Genomics Conference. November 2010. Stellenbosch (South Africa)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raquel Sánchez-Pérez
    • 1
  • Federico Dicenta
    • 1
  • Pedro Martínez-Gómez
    • 1
  1. 1.Departamento de Mejora VegetalCEBAS-CSICEspinardoSpain

Personalised recommendations