Tree Genetics & Genomes

, Volume 8, Issue 2, pp 339–352 | Cite as

High synteny and colinearity among Eucalyptus genomes revealed by high-density comparative genetic mapping

  • Corey J. Hudson
  • Anand R. K. Kullan
  • Jules S. Freeman
  • Danielle A. Faria
  • Dario Grattapaglia
  • Andrzej Kilian
  • Alexander A. Myburg
  • Brad M. Potts
  • René E. Vaillancourt
Original Paper


Understanding genome differentiation is important to compare and transfer genomic information between taxa, such as from model to non-model organisms. Comparative genetic mapping can be used to assess genome differentiation by identifying similarities and differences in chromosome organization. Following release of the assembled Eucalyptus grandis genome sequence (January 2011;, a better understanding of genome differentiation between E. grandis and other commercially important species belonging to the subgenus Symphyomyrtus is required. In this study, comparative genetic mapping analyses were conducted between E. grandis, Eucalyptus urophylla, and Eucalyptus globulus using high-density linkage maps constructed from Diversity Array Technology and microsatellite molecular markers. There were 236–393 common markers between maps, providing the highest resolution yet achieved for comparative mapping in Eucalyptus. In two intra-section comparisons (section MaidenariaE. globulus and section LatoangulataeE. grandis vs. E. urophylla), ∼1% of common markers were non-syntenic and within chromosomes 4.7–6.8% of markers were non-colinear. Consistent with increasing taxonomic distance, lower synteny (6.6% non-syntenic markers) was observed in an inter-section comparison between E. globulus and E. grandis × E. urophylla consensus linkage maps. Two small chromosomal translocations or duplications were identified in this comparison representing possible genomic differences between E. globulus and section Latoangulatae species. Despite these differences, the overall high level of synteny and colinearity observed between section MaidenariaLatoangulatae suggests that the genomes of these species are highly conserved indicating that sequence information from the E. grandis genome will be highly transferable to related Symphyomyrtus species.


Eucalyptus Tree genomics Comparative mapping Chromosome rearrangement 



We thank Norske Skog, Forestry Tasmania, Gunns Ltd, Australian Bluegum Plantations Pty Ltd, Western Australian Plantation Resources (WAPRES), David Pilbeam of the Southern Tree Breeding Association (STBA) and STBA for access to, and maintenance of E. globulus mapping family trials. Valérie Hecht is thanked for her assistance with BLAST work. Funding for this project was provided by the Australian Research Council (DP0770506 & DP110101621) as well as the Cooperative Research Centre for Forestry (Australia). We also thank Sappi Forest Research (South Africa) who generated and maintained the E. grandis × E. urophylla backcross mapping plant materials and the following organisations who provided financial support that contributed to the E. grandis× E. urophylla linkage mapping work; Sappi, Mondi, the Technology and Human Resources for Industry Program (THRIP), the National Research Foundation (NRF) and the Department of Science and Technology (DST) of South Africa.

Supplementary material

11295_2011_444_MOESM1_ESM.pdf (221 kb)
ESM 1 (PDF 221 kb)


  1. Bachir O, Abdellah B (2006) Chromosome numbers of the 59 species of Eucalyptus L'Herit (Myrtaceae). Caryologia 59:207–212Google Scholar
  2. Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. The Plant Cell 12:1021–1029PubMedCrossRefGoogle Scholar
  3. Bennetzen JL (2007) Patterns in grass genome evolution. Current Opinion in Plant Biology 10:176–181PubMedCrossRefGoogle Scholar
  4. Bennetzen JL, Ma J, Devos K (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132PubMedCrossRefGoogle Scholar
  5. Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Molecular Genetics and Genomics 267:338–347PubMedCrossRefGoogle Scholar
  6. Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827CrossRefGoogle Scholar
  7. Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biology 6:20PubMedCrossRefGoogle Scholar
  8. Brooker MIH (2000) A new classification of the genus Eucalyptus L'Her. (Myrtaceae). Aust Syst Bot 13:79–148CrossRefGoogle Scholar
  9. Byrne M, Marquez-garcia M, Uren T, Smith D, Moran G (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341CrossRefGoogle Scholar
  10. Byrne M (2008) Phylogeny, diversity and evolution of eucalypts. In: Sharma AK, Sahrma A (eds) Plant genome—biodiversity and evolution. Science Publishers, Enfield (NH), pp 303–346Google Scholar
  11. Carver E, Stubbs L (1997) Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res 7:1123–1137PubMedGoogle Scholar
  12. Celton J-M, Chagne D, Tustin S, Terakami S, Nishitani C, Yamamoto T, Gardiner S (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Research Notes 2:182–188PubMedCrossRefGoogle Scholar
  13. Cheema J, Dicks J (2009) Computional approaches and software tools for genetic linkage map estimation in plants. Briefings in Bioinformatics 10:595–608PubMedCrossRefGoogle Scholar
  14. Collard B, Mace E, McPhail M, Wenzl P, Cakir M, Fox G, Poulsen D, Jordan D (2009) How accurate are the marker orders in crop linkage maps generated from large marker datasets? Crop and Pasture Science 60:362–372CrossRefGoogle Scholar
  15. Crisp M, Cook L, Steane D (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present day communities? Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359:1551–1571PubMedCrossRefGoogle Scholar
  16. Doughty R (2000) The Eucalyptus: a natural and commercial history of the gum tree. John Hopkins University Press, Baltimore, MDGoogle Scholar
  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  18. Eldridge KG, Davidson J, Harwood C, van Wyk G (1993) Eucalypt breeding and domestication. Oxford, Clarendon PressGoogle Scholar
  19. Faria D, Mamani E, Pappas G, Grattapaglia D (2011) Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genetics & Genomes 7:63–77CrossRefGoogle Scholar
  20. Ferreira A, Flores da Silva M, da Costa e Silva L, Cruz CD (2006) Estimating the effects of population size and type on the accuracy of genetic maps. Genetics and Molecular Biology 29:187–192CrossRefGoogle Scholar
  21. Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  22. Freeman JS, Potts BM, Shepherd M, Vaillancourt RE (2006) Parental and consensus linkage maps of Eucalyptus globulus using AFLP and microsatellite markers. Silvae Genetica 55:202–217Google Scholar
  23. Glaubitz JC, Emebiri LC, Moran GF (2001) Dinucleotide microsatellites from Eucalyptus sieberi: inheritance, diversity, and improved scoring of single-based differences. Genome 44:1041–1045PubMedGoogle Scholar
  24. Grattapaglia D, Bradshaw HD (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24:1074–1078CrossRefGoogle Scholar
  25. Grattapaglia D, Kirst M (2008) Tansley review: Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929PubMedCrossRefGoogle Scholar
  26. Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Kulheim C, Potts BM, Myburg AA (2011) Progress in Myrtaceae genomics: Eucalyptus as the pivotal genus (in press)Google Scholar
  27. Gustafson J, Ma X-F, Korzun V, Snape J (2009) A consensus map of rye integrating mapping data from five mapping populations. TAG Theor Appl Genet 118:793–800CrossRefGoogle Scholar
  28. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38PubMedCrossRefGoogle Scholar
  29. Hamanishi ET, Campbell MM (2011) Genome-wide responses to drought in forest trees. Forestry 84:273–283CrossRefGoogle Scholar
  30. Hougaard BK, Madsen LH et al (2008) Legume anchor markers link syntenic regions between Phaseolus vulgaris, Lotus japonicus, Medicago truncatula and Arachis. Genetics 179:2299–2312PubMedCrossRefGoogle Scholar
  31. Iglesias-Trabado G, Wilstermann D (2008) Eucalyptus universalis; global cultivated eucalypt forests map 2008 (Version 1.0.1). GIT Forestry Consulting—EUCALYPTOLOGICS. Accessed 1/5/2011.
  32. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  33. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29(4):e25PubMedCrossRefGoogle Scholar
  34. Kaló P, Seres A, Taylor S, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis T, Kiss G (2004) Comparative mapping between Medicago sativa and Pisum sativum. Molecular Genetics and Genomics 272:235–246PubMedCrossRefGoogle Scholar
  35. Keats BJB, Sherman SL et al (1991) Guidelines for human linkage maps: an international system for human linkage maps (ISLM, 1990). Genomics 9:557–560PubMedCrossRefGoogle Scholar
  36. Komulainen P, Brown GR, Mikkonen M, Karhu A, García-Gil MR, O'Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. TAG Theor Appl Genet 107:667–678CrossRefGoogle Scholar
  37. Kremer A, Casasoli M (2007) Fagaceae trees. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 161–188Google Scholar
  38. Krishnan A, Guiderdoni E et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170PubMedCrossRefGoogle Scholar
  39. Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461PubMedCrossRefGoogle Scholar
  40. Kullan ARK, van Dyk MM, Jones N, Kanzler A, Bayley A, Myburg AA (2011) High-density genetic linkage maps with over 2400 sequence-anchored DArT markers for genetic dissection in an F2 pseudo-backcross of Eucalyptus grandis × E. urophylla. Tree Genetics & Genomes (in press)Google Scholar
  41. Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998CrossRefGoogle Scholar
  42. Lai J, Ma J et al (2004) Gene loss and movement in the Maize genome. Genome Res 14:1924–1931PubMedCrossRefGoogle Scholar
  43. Laurie D, Devos K (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48:729–740PubMedCrossRefGoogle Scholar
  44. Lysak M, Koch M, Beaulieu J, Meister A, Leitch I (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98PubMedCrossRefGoogle Scholar
  45. Marques C, Brondani R, Grattapaglia D, Sederoff R (2002) Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor Appl Genet 105:474–478PubMedCrossRefGoogle Scholar
  46. Morgante M, De Paoli E, Radovic S (2007) Transposable elements and the plant pan-genomes. Current Opinion in Plant Biology 10:149–155PubMedCrossRefGoogle Scholar
  47. Myburg AA, Griffin AR, Sederoff RR, Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet 107:1028–1042PubMedCrossRefGoogle Scholar
  48. Myburg AA, Potts BM, Marques CM, Kirst M, Gion J, Grattapaglia D, Grima-Pettenatti J (2007) Eucalypts. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 115–160Google Scholar
  49. Neale DB, Krutovsky KV (2005) Comparative genetic mapping in trees: the group of conifers. In: Lorz H, Wenzel G (eds) Biotechnology in agriculture and forestry, Vol. 55. Molecular marker systems in plant breeding and crop improvement. Springer-Verlag, Berlin, pp 267–277CrossRefGoogle Scholar
  50. Paolucci I, Gaudet M, Jorge V, Beritognolo I, Terzoli S, Kuzminsky E, Muleo R, Scarascia Mugnozza G, Sabatti M (2010) Genetic linkage maps of Populus alba L. and comparative mapping analysis of sex determination across Populus species. Tree Genetics & Genomes 6:863–875CrossRefGoogle Scholar
  51. Paterson AH, Bowers JE et al (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540PubMedCrossRefGoogle Scholar
  52. Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X (2009) Comparative genomics of grasses promises a bountiful harvest. Plant Physiol 149:125–131PubMedCrossRefGoogle Scholar
  53. Payn KG, Dvorak WS, Myburg AA (2007) Chloroplast DNA phylogeography reveals the island colonisation route of Eucalyptus urophylla (Myrtaceae). Aust J Bot 55:673–683CrossRefGoogle Scholar
  54. Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N (2006) Comparative genome mapping among Picea glauca, P. mariana × P. rubens and P. abies, and correspondence with other Pinaceae. TAG Theor Appl Genet 113:1371–1393CrossRefGoogle Scholar
  55. Peng JH, Zadeh H et al (2004) Chromosome bin map of expressed sequence tags in homoeologous Group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623PubMedCrossRefGoogle Scholar
  56. Pepe B, Surata K, Suhartono F, Sipayung M, Purwanto A, Dvorak WS (2004) Conservation status of natural populations of Eucalyptus urophylla in Indonesia and international efforts to protect dwindling gene pools. Forest Genetic Resources 31:62–64Google Scholar
  57. Praça MM, Carvalho CR, Novaes CRDB (2009) Nuclear DNA content of three Eucalyptus species estimated by flow and image cytometry. Aust J Bot 57:524–531CrossRefGoogle Scholar
  58. Sansaloni C, Petroli C, Carling J, Hudson C, Steane D, Myburg A, Grattapaglia D, Vaillancourt R, Kilian A (2010) A high-density diversity arrays technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Methods 6:16PubMedCrossRefGoogle Scholar
  59. Semagn K, Bjornstad A, Ndjiondjop MN (2006) Principles, requirements and prospects of genetic mapping in plants. Afr J Biotechnol 5:2569–2587Google Scholar
  60. Slate J (2008) Robustness of linkage maps in natural populations: a simulation study. Proceedings of the Royal Society B 275:695–702PubMedCrossRefGoogle Scholar
  61. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant Journal 3:739–744CrossRefGoogle Scholar
  62. Steane DA, Vaillancourt RE, Russell J, Powell W, Marshall D, Potts BM (2001) Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae). Silvae Genetica 50:89–91Google Scholar
  63. Steane DA, Myburg AA, Sansaloni CP, Petroli CD, Grattapaglia D, Kilian A, Vaillancourt RE (2011) DArT arrays for genetic mapping and diversity analysis of Eucalyptus. Molecular Phylogenetics and Evolution 59:206–224PubMedCrossRefGoogle Scholar
  64. Studer B, Kolliker R et al (2010) EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biology 10:177PubMedCrossRefGoogle Scholar
  65. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  66. Tuskan GA, DiFazio S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  67. Van Ooijen J (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen, NetherlandsGoogle Scholar
  68. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. Heredity 93:77–78CrossRefGoogle Scholar
  69. Williams JE, Brooker MIH (1997) Eucalypts: an introduction. In: Williams J, Woinarski J (eds) Eucalypt ecology: individuals to ecosytems. Cambridge University Press, Cambridge U.K, pp 1–15Google Scholar
  70. Wu F, Eannetta N, Xu Y, Durrett R, Mazourek M, Jahn M, Tanksley S (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. TAG Theor Appl Genet 118:1279–1293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Corey J. Hudson
    • 1
  • Anand R. K. Kullan
    • 2
  • Jules S. Freeman
    • 1
  • Danielle A. Faria
    • 3
  • Dario Grattapaglia
    • 3
    • 4
  • Andrzej Kilian
    • 5
  • Alexander A. Myburg
    • 2
  • Brad M. Potts
    • 1
  • René E. Vaillancourt
    • 1
  1. 1.School of Plant Science and CRC for ForestryUniversity of TasmaniaTasmaniaAustralia
  2. 2.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  3. 3.EMBRAPA Genetic Resources and Biotechnology—Parque Estação BiológicaBrasíliaBrazil
  4. 4.Universidade Catolica de Brasília- SGANBrasiliaBrazil
  5. 5.Diversity Arrays Technology Pty LtdYarralumlaAustralia

Personalised recommendations