Tree Genetics & Genomes

, Volume 8, Issue 1, pp 177–194 | Cite as

Evolution and divergence in the coding and promoter regions of the Populus gene family encoding xyloglucan endotransglycosylase/hydrolases

  • Xia Ye
  • Suhua Yuan
  • Hong Guo
  • Feng Chen
  • Gerald A. Tuskan
  • Zong-Ming ChengEmail author
Original Paper


Xyloglucan endotransglycosylase/hydrolases (XTHs) are believed to modify the cell wall structure by cleaving a xyloglucan polymer and transferring the newly generated, potentially reducing, terminal to another xyloglucan. We report here the detailed analysis of 37 Populus trichocarpa XTH genes/proteins in their divergence in both the coding and 5′ promoter regions. Our results show that the Populus XTH genes have experienced whole-genome and local duplications and pre- and post-speciation divergence. Genome-wide and segmental duplications seem to be dominant in subfamily I and III, while tandem duplication seems to be the major mechanism for the subfamily II expansion, which also has higher average ratios of K a/K s compared to those in subfamily I and III. There was a general lack of organ-specific gene expression. In contrast, the expression patterns in subfamily II varied in response to various hormone treatments, with II-A being up-regulated and II-B down-regulated after 2 h of hormone treatment. Expression for this subfamily was verified using the 1.5-kb PtXTH22 promoter that was fused with the GUS reporter gene and transformed into Arabidopsis. The PtXTH22 promoter contains auxin response element, ethylene insensitive 3-like factors, and brassinosteroid response cis-elements. Histochemical GUS staining of transgenic Arabidopsis seedlings confirmed that the PtXTH22 promoter was up-regulated by several hormones.


Xyloglucan endotransglycosylase/hydrolases (XTHs) Gene duplications and divergence Gene expression Populus Arabidopsis 



Xyloglucan endotransglycosylase


Xyloglucan hydrolase


Xyloglucan endotransglycosylase/hydrolases




Indole-3-acetic acid


Salicylic acid


Gibberellic acid




Jasmonic acid


Abscisic acid





This research was supported in part by a Department of Energy-Bioenergy Center grant and by the Consortium for Plant Biotechnology Research, Inc. The BioEnergy Science Center is a US Department of Energy–Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science.

Supplementary material

11295_2011_431_MOESM1_ESM.doc (1.6 mb)
ESM 1 The Ct data for each reaction of the XTH genes in Populus (DOC 1625 kb)
11295_2011_431_MOESM2_ESM.doc (42 kb)
ESM 2 The efficiency for each pair primers of the XTH genes in Populus (DOC 41 kb)
11295_2011_431_MOESM3_ESM.doc (38 kb)
ESM 3 The promoter sequences of paralogous genes (DOC 38 kb)
11295_2011_431_MOESM4_ESM.doc (52 kb)
ESM 4 The gene models of the PtXTH genes (DOC 51 kb)
11295_2011_431_MOESM5_ESM.doc (48 kb)
ESM 5 The gene structure analysis of the PtXTH genes (DOC 47 kb)


  1. Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997PubMedCrossRefGoogle Scholar
  2. Baba K, Park Yong W, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Yasuhisa O, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2:893–903PubMedCrossRefGoogle Scholar
  3. Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M, Brumer H (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19:1947–1963PubMedCrossRefGoogle Scholar
  4. Becnel J, Natarajan M, Kipp A, Braam J (2006) Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and genevestigator. Plant Mol Biol 61:451–467PubMedCrossRefGoogle Scholar
  5. Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ (2002) Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14:3073–3088PubMedCrossRefGoogle Scholar
  6. Brunner AM, Igor AY, Steven HS (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14PubMedCrossRefGoogle Scholar
  7. Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 4:361–366PubMedCrossRefGoogle Scholar
  8. Carpita N, McCann M (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 52–108Google Scholar
  9. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–42PubMedCrossRefGoogle Scholar
  10. Clough SJ, Andrew FB (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedCrossRefGoogle Scholar
  11. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846PubMedCrossRefGoogle Scholar
  12. Comeron JM (1995) A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol 41(6):1152–1159PubMedCrossRefGoogle Scholar
  13. Comeron JM (1999) K-estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15:763–764PubMedCrossRefGoogle Scholar
  14. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  15. Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444PubMedCrossRefGoogle Scholar
  16. Cui D, Neill SJ, Tang Z, Cai W (2005) Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J Exp Bot 56:1327–1334PubMedCrossRefGoogle Scholar
  17. Curtis MD, Grossniklaus U (2003) Plant Physiol 133(2):462–9PubMedCrossRefGoogle Scholar
  18. Doyle JJ, Lex EF, Andrew HP, Ryan AR, Douglas ES, Pamela SS, Jonathan FW (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–61PubMedCrossRefGoogle Scholar
  19. Geisler LJ, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J, Aspeborg H, Djerbi S, Master E, Andersson-Gunneras S, Sundberg B, Karpinski S, Teeri TT, Kleczkowski LA, Henrissat B, Mellerowicz EJ (2006) Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiol 140:946–962PubMedCrossRefGoogle Scholar
  20. Georgios M, Anagnostis A, Nikos D, Athanasios T (2009) Analysis ofxyloglucan endotransglycosylase/ hydrolase (XTH) genes from all otetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J Plant Physiol 166:403–416CrossRefGoogle Scholar
  21. Hurst LD (2002) The K a/K s ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487PubMedCrossRefGoogle Scholar
  22. Looman C, Magnus A, Charlotta M, Lars H (2002) KRAB zinc finger proteins: an analysis of the molecular mechanisms governing their increase in numbers and complexity during evolution. Mol Biol Evol 19:2118–2130PubMedCrossRefGoogle Scholar
  23. Malinowski R, Filipecki M, Tagashira N, Wisniewska A, Gaj P, Plader W, Malepszy S (2004) Xyloglucan endotransglucosylase/hydrolase genes in cucumber (Cucumis sativus)—differential expression during somatic embryogenesis. Physiol Planta 120:678–685CrossRefGoogle Scholar
  24. Matsui A, Yokoyama R, Seki M, Ito T, Shinozaki K, Takahashi T, Komeda Y, Nishitani K (2005) AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant J 42:525–534PubMedCrossRefGoogle Scholar
  25. Mauch MB, Felix M (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414PubMedCrossRefGoogle Scholar
  26. Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665PubMedCrossRefGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Planta 15:473–497CrossRefGoogle Scholar
  28. Narusaka Y, Narusaka M, Seki M, Fujita M, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kamiya A, Park P, Kobayashi M, Shinozaki K (2003) Expression profiles of Arabidopsis phospholipase A IIA gene in response to biotic and abiotic stresses. Plant Cell Physiol 44(11):1246–1252PubMedCrossRefGoogle Scholar
  29. Nembaware V, Karen C, Janet K, Cathal S (2002) Impact of the presence of paralogs on sequence divergence in a set of mouse–human orthologs. Genome Research 12:1370–1376PubMedCrossRefGoogle Scholar
  30. Nishikubo N, Tatsuya A, Alicja B, Veronica B, Farid I, Ryo F, Harry B, Tuula TT, Takahisa H, Bjorn S, Ewa JM (2007) Xyloglucan endo-transglycosylase (XET) functions n gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48(6):843–855PubMedCrossRefGoogle Scholar
  31. Nishikubo N, Takahashi J, Roos AA, Derba MM, Piens K, Brumer H, Teeri TT, Stålbrand H, Mellerowicz EJ (2010) XET-mediated xyloglucan rearrangements in developing wood of hybrid aspen (Populus tremula × tremuloides). Plant Physiol. doi: 10.1104/pp.110.166934
  32. Nix DA, Eisen MB (2005) GATA: a graphic alignment tool for comparative sequence analysis. BMC Bioinformatics 6:9PubMedCrossRefGoogle Scholar
  33. Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435PubMedCrossRefGoogle Scholar
  34. Saladie M, Rose JKC, Cosgrove DJ, Catala C (2006) Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant J 47:282–295PubMedCrossRefGoogle Scholar
  35. Tabuchi A, Kamisaka S, Hoson T (1997) Purification of xyloglucan hydrolase/endotransferase from cell walls of azuki bean epicotyls. Plant Cell Physiol 38:653–658Google Scholar
  36. Tabuchi A, Mori H, Kamisaka S, Hoson T (2001) A new type of endo-xyloglucan transferase eevoted to xyloglucan hydrolysis in the cell wall of azuki bean epicotyls. Plant Cell Physiol 42:154–161PubMedCrossRefGoogle Scholar
  37. Tuskan GA, DiFazio SP, Hellsten U et al (2006) The genome of western black cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  38. Udvardi MK, Tomasz C, Wolf RS (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737PubMedCrossRefGoogle Scholar
  39. Valeria G, Silvia F, Stephen CF, Katia R, Pau F, Antonio E, Fathi MS, Josep B, Pere P, Joan R, David CR (2008) ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana. J Exp Bot 59(4):875–889CrossRefGoogle Scholar
  40. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34.1-34.11Google Scholar
  41. Vissenberg K, Fry SC, Pauly M, Hofte H, Verbelen J-P (2005) XTH acts at the microfibril–matrix interface during cell elongation. J Exp Bot 56:673–683PubMedCrossRefGoogle Scholar
  42. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  43. Wu YJ, Jeong BR, Fry SC, Boyer JS (2005) Change in XET activities, cell wall extensibility and hypocotyl elongation of soybean seedlings at low water potential. Planta 220:593–601PubMedCrossRefGoogle Scholar
  44. Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555–1567PubMedCrossRefGoogle Scholar
  45. Yang X, Tuskan GA, Cheng Z-M (2006) Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 142:820–830PubMedCrossRefGoogle Scholar
  46. Ye X, Byung-guk K, Lori DO, Li Y, Cheng Z-M (2009a) Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell, Tiss Organ Cult 97:271–283CrossRefGoogle Scholar
  47. Ye X, Kang B-G, Osburn LD, Cheng Z-M (2009b) The COBRA gene family in Populus and gene expression in vegetative tissues and in response to hormones and environmental stresses. Plant Growth Regul 58:211–223CrossRefGoogle Scholar
  48. Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033PubMedCrossRefGoogle Scholar
  49. Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants: a comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121PubMedCrossRefGoogle Scholar
  50. Yokoyama R, Rose JKC, Nishitani K (2004) A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 134:1088–1099PubMedCrossRefGoogle Scholar
  51. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:0266–0281CrossRefGoogle Scholar
  52. Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Xia Ye
    • 1
    • 2
  • Suhua Yuan
    • 2
    • 5
  • Hong Guo
    • 3
  • Feng Chen
    • 2
    • 6
  • Gerald A. Tuskan
    • 4
    • 6
  • Zong-Ming Cheng
    • 2
    • 6
    Email author
  1. 1.College of HorticultureHenan Agricultural UniversityZhengzhouPeople’s Republic of China
  2. 2.Department of Plant SciencesUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Biochemistry, Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleUSA
  4. 4.Environmental Science DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.Institute for Plant Genomics and BiotechnologyTexas A&M UniversityCollege StationUSA
  6. 6.Bioenergy Science CenterOak ridge National LaboratoryOak RidgeUSA

Personalised recommendations