Tree Genetics & Genomes

, Volume 7, Issue 6, pp 1113–1122 | Cite as

Evolution of rDNA FISH patterns in the Fagaceae

  • Teresa Ribeiro
  • João Loureiro
  • Conceição Santos
  • Leonor Morais-Cecílio
Original Paper


The Fagaceae is one of the most important plant families in European forest ecosystems, and it includes several genera distributed in the Northern hemisphere. In this work we studied the genome organization and evolution within the family, by karyotyping and physically mapping rDNA in ten European and Asian species of the genera Fagus, Quercus, and Castanea. All of the species studied had a chromosome number of 2n=2x=24, except for the first report of a single individual of Quercus suber which proved to be triploid (2n=3x=36). The rDNA physical mapping revealed several patterns: the dominant one is present in European and Asian Quercus subgenus Quercus, and in Castanea sativa and Castanea crenata, consisting of two 18S–25S rDNA loci (one subterminal major and one pericentromeric minor) and one 5S rDNA pericentromeric locus. In Fagus sylvatica and in Quercus sessilifolia, different patterns were observed: four terminal 18S–25S rDNA loci and two 5S rDNA pericentromeric loci in the former, and five 18S–25S rDNA loci (three terminal and two intercalary) and one 5S rDNA pericentromeric locus in the latter. In Castanea mollissima a distinct rDNA distribution pattern with two intercalary 18S–25S rDNA loci and two 5S rDNA was found. These findings suggest rDNA loci restructuring during Castanea evolution, and variability of 18S–25S loci between Quercus and Cyclobalanopsis subgenera.


Fagaceae karyotype Quercus Castanea Fagus rDNA Triploid Quercus suber 



The authors would like to thank Dr. Hachemi Merouani, Dr. Atshuchi Sakai, Prof. Carlos Abreu, Engr. Isabel Silvestre, Engr. Carla Faria, and Bruno Larsen for generously providing help in obtaining and preserving the plant material. We thank Prof. Wanda Viegas for many helpful comments. We are also very grateful to Prof. Neil Jones for his critical revision of the manuscript and editing of English. T.R was supported by Fundação Ciência e Tecnologia, Portugal (Grant SFRH/BD/13319/2003).


  1. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops.1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306PubMedCrossRefGoogle Scholar
  3. Barreneche T, Casasoli M, Russell K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566PubMedCrossRefGoogle Scholar
  4. Burda R, Shchepotiev F (1973) Spontaneous polyploidy in seedlings of multi-seeded acorns of Quercus robur L. Cytol Genet 7:140–143Google Scholar
  5. Butorina A (1993) Cytogenetic study of diploid and spontaneous triploid oaks, Quercus robur L. Ann Sci For 50:144–150CrossRefGoogle Scholar
  6. Cai Q, Zhang D, Liu Z-L, Wang X-R (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722PubMedCrossRefGoogle Scholar
  7. Camus A (1936–54) Les chênes: Monographie du genre Quercus. In: Lechevalier. (ed) Les chênes: Monographie du genre Quercus, ParisGoogle Scholar
  8. Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546PubMedCrossRefGoogle Scholar
  9. Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96PubMedCrossRefGoogle Scholar
  10. Chalupa V (1986) Fagus sylvatica L. (European beech). In: BYPS (ed) Biotechnology in agriculture and forestry trees IV. Springer, pp 138–140Google Scholar
  11. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220PubMedCrossRefGoogle Scholar
  12. Chen G, Sun WB, Han CY, Coombes A (2007) Karyomorphology of the endangered Trigonobalanus doichangensis (A. Camus) Forman (Fagaceae) and its taxonomic and biogeographical implications. Bot J Linn Soc 154:321–330CrossRefGoogle Scholar
  13. Chokchaichamnankit P, Anamthawat-Jonsson K, Chulalaksananukul W (2008) Chromosomal mapping of 18S–25S and 5S ribosomal genes on 15 species of Fagaceae from Northern Thailand. Silvae Genet 57:5–13Google Scholar
  14. de Moraes AP, Soares WD, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121PubMedCrossRefGoogle Scholar
  15. Denk T (2003) Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Syst Evol 240:55–81CrossRefGoogle Scholar
  16. Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Plant Sci 170:926–940CrossRefGoogle Scholar
  17. Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366Google Scholar
  18. Denk T, Grimm GW, Hemleben V (2005) Patterns of molecular and morphological differentiation in Fagus (Fagaceae): phylogenetic implications. Am J Bot 92:1006–1016PubMedCrossRefGoogle Scholar
  19. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry PartA 51A:127–128 Google Scholar
  20. Doudrick RL, Heslop-Harrison JS, Nelson CD, Schmidt T, Nance WL, Schwarzacher T (1995) Karyotype of slash pine (Pinus elliottii var. elliottii) using patterns of fluorescence in-situ hybridization and fluorochrome banding. J Hered 86:289–296Google Scholar
  21. Dzialuk A, Chybicki I, Welc M, Soliwiniska E, Burczyk J (2007) Presence of triploids among oak species. Ann Bot 99:959–964PubMedCrossRefGoogle Scholar
  22. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  23. Gerlach W, Bedbrook J (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedCrossRefGoogle Scholar
  24. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865PubMedCrossRefGoogle Scholar
  25. Grimm GW, Denk T (2008) ITS evolution in Platanus (Platanaceae): homoeologues, pseudogenes and ancient hybridization. Ann Bot 101:403–419PubMedCrossRefGoogle Scholar
  26. Grimm GW, Denk T, Hemleben V (2007) Coding of intraspecific nucleotide polymorphisms: a tool to resolve reticulate evolutionary relationships in the ITS of beech trees (Fagus L., Fagaceae). Syst Biodivers 5:291–309CrossRefGoogle Scholar
  27. Hamon P, Siljak-Yakovlev S, Srisuwan S, Robin O, Poncet V, Hamon S, de Kochko A (2009) Physical mapping of rDNA and heterochromatin in chromosomes of 16 Coffea species: a revised view of species differentiation. Chromosome Res 17:291–304PubMedCrossRefGoogle Scholar
  28. Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497PubMedCrossRefGoogle Scholar
  29. Hou D (1971) Chromosome numbers of Trigonobalanus verticillata Forman (Fagaceae). Acta Bot Neerl 20:543–549Google Scholar
  30. Jaynes RA (1962) Chesnut chromosomes. For Sci 8:372–377Google Scholar
  31. Johnson GP (1988) Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arbor 69:25–49Google Scholar
  32. Lang P, Dane F, Kubisiak TL (2006) Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data. Tree Genet Genomes 2:132–139CrossRefGoogle Scholar
  33. Lang P, Dane F, Kubisiak TL, Huang H (2007) Molecular evidence for an Asian origin and a unique westward migration of species in the genus Castanea via Europe to North America. Mol Phylogenet Evol 43:49–59PubMedCrossRefGoogle Scholar
  34. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping of 4 sites of 5S rDNA sequences and one-site of the alpha-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517–523PubMedCrossRefGoogle Scholar
  35. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  36. Li D, Zhang X (2002) Physical localization of the 18S-5.8S-26S rDNA and sequence analysis of ITS regions in Thinopyrum ponticum (Poaceae: Triticeae): implications for concerted evolution. Ann Bot 90:445–452PubMedCrossRefGoogle Scholar
  37. Li RQ, Chen ZD, Lu AM, Soltis DE, Soltis PS, Manos PS (2004) Phylogenetic relationships in Fagales based on DNA sequences from three genomes. Int J Plant Sci 165:311–324CrossRefGoogle Scholar
  38. Liu ZL, Zhang D, Hong DY, Wang XR (2003) Chromosomal localization of 5S and 18S-5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204PubMedGoogle Scholar
  39. Loureiro J, Pinto G, Lopes T, Dolezel J, Santos C (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822PubMedCrossRefGoogle Scholar
  40. Loureiro J, Rodriguez E, Dolezel J, Santos C (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888PubMedCrossRefGoogle Scholar
  41. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229PubMedCrossRefGoogle Scholar
  42. Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291–317PubMedCrossRefGoogle Scholar
  43. Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781PubMedCrossRefGoogle Scholar
  44. Manos PS, Steele KP (1997) Phylogenetic analyses of “higher” Hamamelididae based on plastid sequence data. Am J Bot 84:1407–1419PubMedCrossRefGoogle Scholar
  45. Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379CrossRefGoogle Scholar
  46. Manos PS, Cannon CH, Oh S-H (2008) Phylogenetic relationships and taxonomic status of the paleoendemic Fagaceae of western North America: recognition of a new genus Notholithocarpus. Madroño 55:181–190CrossRefGoogle Scholar
  47. Mendes A, Graça J (2009) Cork oak trees and woodlands: cork bottle stoppers and other cork products. In: Aronson J, Pereira JS, Pausas JG (eds) Cork oak woodlands on the edge ecology, adaptive management, and restoration. Island Press, Washington, pp 55–69Google Scholar
  48. Mir C, Toumi L, Jarne P, Sarda V, Di Giusto F, Lumaret R (2006) Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers. Heredity 96:175–184PubMedCrossRefGoogle Scholar
  49. Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci Forest 50:25S–34SCrossRefGoogle Scholar
  50. Nixon KC (1997) Quercus. In: Press OU (ed) Flora of North America North of Mexico, New York, pp 445–506Google Scholar
  51. Oh S, Manos P (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451Google Scholar
  52. Ohri D, Ahuja MR (1991) Giemsa C-banding in Fagus sylvatica L., Betula pendula Roth and Populus tremula L. Silvae Genet 40:72–74Google Scholar
  53. Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164CrossRefGoogle Scholar
  54. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci U S A 101:18240–18245PubMedCrossRefGoogle Scholar
  55. Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59Google Scholar
  56. Ricroch A, Peffley EB, Baker RJ (1992) Chromosomal location of rDNA in Allium—in situ hybridization using biotin-labeled and fluorescein-labeled probe. Theor Appl Genet 83:413–418CrossRefGoogle Scholar
  57. Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115PubMedCrossRefGoogle Scholar
  58. Sheng MY, Wang LJ (2010) Chromosomal localization of 45S and 5S rDNA in 14 species and the implications for genome evolution of genus Epimedium. Plant Syst Evol 290:65–73CrossRefGoogle Scholar
  59. Singh G (2010) Plant systematics: an integrated approach, 3rd edn. Science Publishers USGoogle Scholar
  60. Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95PubMedCrossRefGoogle Scholar
  61. Zhang D, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Am J Bot 86:735PubMedCrossRefGoogle Scholar
  62. Zoldos V, Papes D, Brown SC, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168Google Scholar
  63. Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Teresa Ribeiro
    • 1
    • 2
  • João Loureiro
    • 3
    • 4
  • Conceição Santos
    • 3
  • Leonor Morais-Cecílio
    • 1
  1. 1.Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de AgronomiaTechnical University of LisbonLisbonPortugal
  2. 2.Centro de Biotecnologia Agrícola e Agro-Alimentar do Baixo Alentejo e Litoral (CEBAL), Escola Superior AgráriaBejaPortugal
  3. 3.Laboratory of Biotechnology and Cytomics, Department of BiologyUniversity of AveiroAveiroPortugal
  4. 4.Centre for Functional Ecology, Department of Life Sciences, Faculty of Science and TechnologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations