Advertisement

Tree Genetics & Genomes

, 7:987 | Cite as

Genome size and cytogenetic characterization of three Algerian Retama species

  • Radia Benmiloud-Mahieddine
  • Mona Abirached-Darmency
  • Spencer C. Brown
  • Meriem Kaid-Harche
  • Sonja Siljak-Yakovlev
Original Paper

Abstract

Thirty-three populations belonging to the three Retama species, Retama monosperma, Retama raetam and Retama sphaerocarpa, were collected to study species differentiation using flow cytometry for 2C DNA assessment and molecular cytogenetics for karyotype organisation. All were 2n = 48. Genome size ranged from 1.76 to 1.97 pg and revealed significant intraspecific variation correlated to the geographic distribution of the populations. The number and position of the two ribosomal gene families 5S and 45S were determined by fluorescent in situ hybridization, revealing chromosome reorganisation between species. In R. raetam and R. monosperma, the minor 5S loci co-localised with 45S on the satellite chromosome pair. Fluorochrome banding identified GC- and AT-rich DNA regions. In R. monosperma a unique chromomycin positive GC-rich band was observed associated with the secondary constriction. In contrast, an original pattern showing two chromomycin positive bands localised at each side of the extended rDNA locus was observed in R. sphaerocarpa and R. raetam. The polymorphism revealed in our cytogenetic data allowed us to separate the group of R. raetam and R. monosperma from R. sphaerocarpa.

Keywords

FISH Flow cytometry Fluorochrome banding Genome size rDNA 

Notes

Acknowledgments

We are indebted to Odile Robin and Olivier Catrice for the technical assistance in cytogenetics and cytometry respectively, to Mrs Ainoya who accompanied us for consulting plant material at the “Muséum d’Histoire Naturelle de Paris”, to Dr Christophe Lecomte from Institut national de la recherche agronomique Dijon for the statistical analysis on genome size and to two anonymous referees whose comments have improved the manuscript. Cytometry was done on the Imagif Platform with the support of the IFR87 La plante et son environnement. This work is the part of the project MDU 530 financed by Comité Mixte d’Evaluation et de Prospective de Coopération Interuniversitaire Franco-Algérienne which we thank for the financial support.

References

  1. Abirached-Darmency M, Pardo-Vivant E, Chelysheva L, Pouthier T (2005) Variation in number and position among legume species and detection of 2 linked rDNA loci in the model Medicago trunculata by FISH. Genome 48:556–561PubMedCrossRefGoogle Scholar
  2. Belkhiri A, Buchko J, Klassen GR (1992) The 5S ribosomal RNA gene in Pythium species: two different genomic locations. Mol Biol Evol 9(6):1089–1110PubMedGoogle Scholar
  3. Bell GI, Degennaro JL, Gelfand DH, Bishop RJ, Valenzuela P, Rutter WJ (1977) Ribosomal RNA genes of Saccharomyces cerevisiae. I. Physical map of the repeating unit and location of the regions coding for 5S, 5.8S, 18S, and 25S ribosomal RNAs. J Biol Chem 22:8118–8125Google Scholar
  4. Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200CrossRefGoogle Scholar
  5. Bennetzen JL, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132PubMedCrossRefGoogle Scholar
  6. Bhattacharya SS, Khalifa MM, Chaudhri II (1971) In IOPB chromosome number reports XXXII. Taxon 20(2/3):349–356Google Scholar
  7. Biradar DP, Rayburn AL (1993) Heterosis and nuclear DNA content in maize. Heredity 71:300–304CrossRefGoogle Scholar
  8. Bou Dagher-Kharrat M, Grenier G, Bariteau M, Brown S, Siljak-Yakovlev S, Savoure A (2001) Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theor Appl Genet 103:846–854CrossRefGoogle Scholar
  9. Caravaca F, Figueroa D, Alguacil MM, Roldan A (2003) Application of composted urban residue enhanced the performance of afforested shrub species in degraded semiarid land. Bioresource Technol 90:65–70CrossRefGoogle Scholar
  10. Cerbah M, Kevei Z, Siljak-Yakovlev S, Kondorosi E, Kondorosi A, Trinh TH (1999a) FISH chromosome mapping allowing karyotype analysis in Medicago trunculata lines Jemalong J5 and R-108-1. Mol Plant-Microbe Interact 12:947–950CrossRefGoogle Scholar
  11. Cerbah M, Coulaud J, Brown S, Siljak-Yakovlev S (1999b) Evolutionary DNA variation in the genus Hypochaeris. Heredity 82:261–266PubMedCrossRefGoogle Scholar
  12. Cerbah M, Mortreau E, Brown S, Siljak-Yakovlev S, Bertrand H, Lambert C (2001) Genome size variation and species relationships in the genus Hydrangea. Theor Appl Genet 103:45–51CrossRefGoogle Scholar
  13. Cusna Velari T, Feoli Chiapella L (1991) Systematic relationships within the Genista group (Genisteae, Fabaceae) on the basis of karyological and biometrical data. Flora Mediter 1:21–29Google Scholar
  14. Do GS, Seo BB, Yamamoto M, Suzuki G, Mukai Y (2001) Identification and chromosomal location of tandemly repeat DNA sequences in Allium cepa. Genes Genet Syst 76:53–60PubMedCrossRefGoogle Scholar
  15. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  16. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128PubMedCrossRefGoogle Scholar
  17. Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC, Torrez-Ruiz RA, Jones G (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J 13:867–876PubMedCrossRefGoogle Scholar
  18. Fuchs JÈ, Strehl S, Brandes A, Schweizer D, Schubert I (1998) Molecular cytogenetic characterization of the Vicia faba genome—heterochromatin differentiation, replication patterns and sequence. Chromosom Res 6:219–230CrossRefGoogle Scholar
  19. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytophotometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  20. Gallego-Martin F, Sandez Anta MA, Navarro Andrés F (1988) Acerca de la cariología de algunas genisteas del centro-occidente español. Lazaroa 9:55–60Google Scholar
  21. Geber G, Schweizer D (1987) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air drying technique for producing chromosome spreads. Plant Syst Evol 158:98–106CrossRefGoogle Scholar
  22. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedCrossRefGoogle Scholar
  23. Gerlach WL, Dyer TA (1980) Sequence organization of the repeated units in the nucleus of wheat, which contains 5S rDNA genes. Nucleic Acids Res 8:4851–4865PubMedCrossRefGoogle Scholar
  24. Gilson PR, Adcock GJ, Howlett BJ, Mc Fadden GI (1995) Organisation and sequence analysis of nuclear-encoded 5s ribosomal RNA genes in cryptomonad algae. Curr Genet 27(3):239–42PubMedCrossRefGoogle Scholar
  25. Godelle B, Cartier D, Marie D, Brown SC, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626PubMedCrossRefGoogle Scholar
  26. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23(4):1029–1041CrossRefGoogle Scholar
  27. Hajdera I, Siwinska D, Hasterok R, Maluszynska J (2003) Molecular cytogenetic analysis of genome structure in Lupinus angusifolius and Lupinus cosentinii. Theor Appl Genet 107(6):988–996PubMedCrossRefGoogle Scholar
  28. Hasterok R, Maluszynska J (2000) Different rRNA gene expression in primary and adventitious roots of Allium cepa L. Folia Histochem Cytobiol 38:181–184PubMedGoogle Scholar
  29. Hennig W (1999) Heterochromatin. Chromosoma 108:1–9PubMedCrossRefGoogle Scholar
  30. Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leitch AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. J Methods Cell Mol Biol 3:109–116Google Scholar
  31. Käss E, Wink M (1997) Phylogenetic relationships in the Papilionoideae (Family Leguminosae) on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2). Mol Phylogenet Evol 8:65–88PubMedCrossRefGoogle Scholar
  32. Kwon JK, Kim BD (2009) Localization of 5S rRNA and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Mol Cell 27(2):205–209CrossRefGoogle Scholar
  33. Leitch AR, Lim KY, Leitch IJ, O’Neil M, Low F (1998) Molecular cytogenetic studies in rubber, Hevea brasiliensis Muell. Arg. (Euphorbiaceae). Genome 41:464–467Google Scholar
  34. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  35. Lopez J, Devesa JA, Ruiz T, Ortega-Olivencia A (1998) Seedling morphology in Genisteae (Fabaceae) from south-west Spain. Bot J Linn Soc 127:229–250Google Scholar
  36. Louaar S, Akkal S, Laouer H, Guilet D (2007) Flavonoids of Retama sphaerocarpa leaves and their antimicrobial activities. Chem Nat Comp 43(5):616–617CrossRefGoogle Scholar
  37. Maire R (1987) Flore de l’Afrique du Nord, 14 Vols. Editions Lechevalier, Paris, p 128Google Scholar
  38. Marie M, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51PubMedCrossRefGoogle Scholar
  39. Martín-Cordero C, López-Lázaro M, Espartero JL, Ayuso MJ (2000) Retamatrioside, a new triglycoside from Retama sphaerocarpa. J Nat Prod 63:248–250PubMedCrossRefGoogle Scholar
  40. McMurphy LM, Rayburn AL (1992) Chromosomal and cell size analysis of cold tolerant maize. Theor Appl Gent 84:798–802Google Scholar
  41. Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233PubMedGoogle Scholar
  42. Naganowska B, Zielinska A (2004) Localisation of DNA in the Lupinus genome during the cell cycle. J Appl Genet 45(2):189–193PubMedGoogle Scholar
  43. Naganowska B, Wolko B, Liwinska R, Kaczmarek AZ (2003) Nuclear DNA content variation and species relationships in the genus Lupinus (Fabaceae). Ann Bot 92:349–355PubMedCrossRefGoogle Scholar
  44. Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82(A):75–83CrossRefGoogle Scholar
  45. Pardo C, Cubas P, Tahiri H (2004) Molecular phylogeny and systematics of Genista (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). Plant Syst Evol 244:93–119CrossRefGoogle Scholar
  46. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonica. Genetics 161:1661–1672PubMedGoogle Scholar
  47. Pedrosa A, Vallejos CE, Bachmair A, Schweizer D (2003) Integration of common bean (Phaseolus vulgaris L.) linkage and chromosomal maps. Theor Appl Genet 106:205–212PubMedGoogle Scholar
  48. Pugnaire FL, Haase P, Puigdefábregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77:1420–1426CrossRefGoogle Scholar
  49. Quezel P, Santa S (1962) Nouvelle flore de l’Algérie et des régions désertiques méridionales (Tome 1 et 2). Edition du C.R.N.S. France, 1170 pGoogle Scholar
  50. Reese G (1957) Über die polyploidiespektren in der nordsaharischen Wüstenpflanzen. Flora 146(3):478–487Google Scholar
  51. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324PubMedCrossRefGoogle Scholar
  52. Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldoš V, Jelenić S, Papeš D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512PubMedCrossRefGoogle Scholar
  53. Singh RJ, Kim HH, Hymowitz T (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet 103:212–218CrossRefGoogle Scholar
  54. Sone T, Fujisawa M, Takenaka M, Nakagawa S, Yamaoka S, Sakaida M, Nishiyama R, Yamato KT, Ohmido N, Fukui K, Fukuzawa H, Ohyama K (1999) Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Mol Biol 41:679–685PubMedCrossRefGoogle Scholar
  55. Srebniak M, Rasmussem O, Maluszynska J (2002) Cytogenetic analysis of an asymmetric potato hybrid. J Appl Genet 43:19–31PubMedGoogle Scholar
  56. Stebbins GL (1971) Chromosomal evolution in higher plants. Arnold, LondonGoogle Scholar
  57. Véla E, Benhouhou S (2007) Evaluation d’un nouveau point chaud de biodiversité végétale dans le bassin méditerranéen (Afrique du Nord). C Biologies 330:589–605CrossRefGoogle Scholar
  58. Webb PB (1843) Sur le genre Retama. Ann Sc Nat Bot Ser 2(20):269–283Google Scholar
  59. Winterfeld G, Doring E, Röser M (2009) Chromosome evolution in wild oat grasses (Aveneae) revealed by molecular phylogeny. Genome 52(4):361–80PubMedCrossRefGoogle Scholar
  60. Zohary M (1959) A revision of the genus Retama (Boiss). Bull Res Counc Isr 7(D):1–2Google Scholar
  61. Zoldoš V (2000) Organisation du génome et relations évolutives entre quelques espèces du genre Quercus. Thèse de doctorat, Université de Paris-Sud et Université de ZagrebGoogle Scholar
  62. Zoldoš V, Papeš D, Cerbah M, Besendorfer S, Siljak-Yakovlev S, Panaud O (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organisation among 11 Quercus species. Theor Appl Genet 99:969–977CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Radia Benmiloud-Mahieddine
    • 1
    • 2
  • Mona Abirached-Darmency
    • 2
  • Spencer C. Brown
    • 3
  • Meriem Kaid-Harche
    • 1
  • Sonja Siljak-Yakovlev
    • 4
  1. 1.Département de Biotechnologies VégétalesUniversité des Sciences et de la Technologie Mohamed Boudiaf d’OranOranAlgeria
  2. 2.UMR 102 Genetics and Ecophysiology of Grain Legumes, INRADijonFrance
  3. 3.Compartimentation Cellulaire, Institut des Sciences du VégétalGif-sur-YvetteFrance
  4. 4.Univ. Paris-Sud XI, Ecologie, Systématique, EvolutionOrsayFrance

Personalised recommendations