Advertisement

Tree Genetics & Genomes

, Volume 7, Issue 3, pp 617–627 | Cite as

Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa

  • Jessy LabbéEmail author
  • Véronique Jorge
  • Annegret Kohler
  • Patrice Vion
  • Benoît Marçais
  • Catherine Bastien
  • Gerald A. Tuskan
  • Francis Martin
  • François Le Tacon
Original Paper

Abstract

A Populus deltoides × Populus trichocarpa F1 pedigree was analyzed for quantitative trait loci (QTLs) affecting ectomycorrhizal development and for microarray characterization of gene networks involved in this symbiosis. A 300 genotype progeny set was evaluated for its ability to form ectomycorrhiza with the basidiomycete Laccaria bicolor. The percentage of mycorrhizal root tips was determined on the root systems of all 300 progeny and their two parents. QTL analysis identified four significant QTLs, one on the P. deltoides and three on the P. trichocarpa genetic maps. These QTLs were aligned to the P. trichocarpa genome and each contained several megabases and encompass numerous genes. NimbleGen whole-genome microarray, using cDNA from RNA extracts of ectomycorrhizal root tips from the parental genotypes P. trichocarpa and P. deltoides, was used to narrow the candidate gene list. Among the 1,543 differentially expressed genes (p value ≤ 0.05; ≥5.0-fold change in transcript level) having different transcript levels in mycorrhiza of the two parents, 41 transcripts were located in the QTL intervals: 20 in Myc_d1, 14 in Myc_t1, and seven in Myc_t2, while no significant differences among transcripts were found in Myc_t3. Among these 41 transcripts, 25 were overrepresented in P. deltoides relative to P. trichocarpa; 16 were overrepresented in P. trichocarpa. The transcript showing the highest overrepresentation in P. trichocarpa mycorrhiza libraries compared to P. deltoides mycorrhiza codes for an ethylene-sensitive EREBP-4 protein which may repress defense mechanisms in P. trichocarpa while the highest overrepresented transcripts in P. deltoides code for proteins/genes typically associated with pathogen resistance.

Keywords

Quantitative trait loci Poplar Symbiosis Ectomycorrhiza Laccaria 

Notes

Acknowledgments

This project was supported by grants from the European Commission project ENERGYPOPLAR and EVOLTREE (to FM). JL was supported by a scholarship from the INRA, Region Lorraine, the ORNL, and the U.S. Department of Energy. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC for the US Department of Energy under contract no. DE-AC05-00OR2272. We thank Christine Delaruelle, Béatrice Palin, Judith Richter, Verónica Pereda, Saskia Reinhart, Anne Delaruelle, Simon Duchêne, Aurore Coince, and Jean-Louis Churin for their assistance in the inoculation and in measuring the colonization rates. We also thank Denis Tagu for his help and fruitful discussions.

References

  1. Barker SJ, Tagu D, Delp G (1998) Regulation of root and fungal morphogenesis in mycorrhizal symbiosis. Plant Physiol 116:1201–1207CrossRefGoogle Scholar
  2. Blée E, Schuber F (1992) Occurrence of fatty acid epoxide hydrolases in soybean (Glycine max). Purification and characterization of the soluble form. Biochem J 282:711–714Google Scholar
  3. Bradshaw HD, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet 86:301–307CrossRefGoogle Scholar
  4. Cornelius J (1994) Heritabilities and additive genetic coefficient of variation in forest trees. Can J For Res 24:372–379CrossRefGoogle Scholar
  5. Di Battista C, Selosse MA, Bouchard D, Stenström E, Le Tacon F (1996) Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S238. Mycol Res 100:1315–1324CrossRefGoogle Scholar
  6. Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with Douglas fir-Laccaria laccata symbiosis: effects in aseptic and glasshouse conditions. Ann Sci For 48:239–251CrossRefGoogle Scholar
  7. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defense signaling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699PubMedCrossRefGoogle Scholar
  8. Faivre-Rampant P, Bastien C, Augustin S, Breton V, Delplanque A, Mourier MC, Kertadikara A, Laurans F, Lefèvre F, Lesage MC, Menard M, Pinon J, Saintagne C, Valadon A, Villar M, Prat D (1999) Locating genomic regions involved in pest resistance in poplars. Proceedings of the International Poplar Symposium II, IUFRO, Orléans, France pp31Google Scholar
  9. Felten J, Legué V, Ditengou FA (2010) Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor. Plant Signal Behav 5:1–4CrossRefGoogle Scholar
  10. Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas-fir. Appl Environ Microbiol 63:139–144PubMedGoogle Scholar
  11. Gay G, Normand L, Marmeisse R, Sotta B, Debaud JC (1994) Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytol 128:645–657CrossRefGoogle Scholar
  12. Gomi K, Yamamato H, Akimitsu K (2003) Epoxide hydrolase: a mRNA induced by the fungal pathogen Alternaria alternata on rough lemon (Citrus jambhiri Lush). Plant Mol Biol 53:189–199PubMedCrossRefGoogle Scholar
  13. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  14. Hamberg M, Fahlstadius P (1992) On the specificity of a fatty acid epoxygenase in broad bean (Vicia faba L.). Plant Physiol 99:987–995Google Scholar
  15. Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF Domain) in plants. J Biol Chem 273:26857–26861PubMedCrossRefGoogle Scholar
  16. Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2002) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168CrossRefGoogle Scholar
  17. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Speed, exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264PubMedCrossRefGoogle Scholar
  18. Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C (2005) Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytol 167:113–127PubMedCrossRefGoogle Scholar
  19. Karabaghli-Degron C, Sotta B, Bonnet M, Gay G, Le Tacon F (1998) The auxin transport inhibitor 2, 3, 5-triiodobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ectomycorrhizal fungus Laccaria bicolor. New Phytol 140(4):723–733CrossRefGoogle Scholar
  20. Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1 a damage control enzyme affects the balance between defensepathways in plants. Plant Cell 17:282–294Google Scholar
  21. Kato T, Yamaguchi Y, Uehara T, Yokoyama T, Namai T, Yamanaka S (1983) Defense mechanism of the rice plant against rice blast disease. Naturwissenschaften 70:200–201Google Scholar
  22. Kato T, Yamaguchi Y, Abe N, Uehara T, Namai T, Kodama M, Shiobara Y (1985) Structure and synthesis of unsaturated trihydroxy C18 fatty acids in rice plants suffering from rice blast disease. Tetrahedron Lett 26:2357–2360Google Scholar
  23. Kiyosue T, Beetham JK, Pinot F, Hammock BD, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress. Plant J 6:259–269PubMedCrossRefGoogle Scholar
  24. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  25. Lefèvre F, Mc G-M, Faivre-Rampant P, Villar M (1998) A single gene cluster controls incompatibility and partial resistance to various Melampsora larici-populina races in hybrid poplars. Phytopathology 88:156–163PubMedCrossRefGoogle Scholar
  26. Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vögeli-Lange R, Meins F (1998) Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I-1, 3-glucanase during tobacco seed germination. Plant Mol Biol 38:785–795PubMedCrossRefGoogle Scholar
  27. Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 2004(16):319–331CrossRefGoogle Scholar
  28. Li J, Bradera G, Tapio Palva E (2008) Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin B1 in Arabidopsis. Mol Plant 1:482–495PubMedCrossRefGoogle Scholar
  29. Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Cur Opin Plant Biol 12:508–515CrossRefGoogle Scholar
  30. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2003) Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154CrossRefGoogle Scholar
  31. Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Cur Opin Plant Biol 10:204–210CrossRefGoogle Scholar
  32. Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Danchin EGJ, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila G, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) Symbiosis insights from the genome of the mycorrhizal basidiomycete Laccaria bicolor. Nature 452:88–92PubMedCrossRefGoogle Scholar
  33. Masui H, Kondo T, Kojima M (1989) An antifungal compound 9,12,13-trihydroxy-(E)-10- octadecenoic acid from Colocasia antiquorum inoculated with Ceratocystis fimbriata. Phytochemistry 28:2613–2615Google Scholar
  34. Nehls U, Mikolajewski S, Magel E, Hampp R (2001) Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol 150:533–541CrossRefGoogle Scholar
  35. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedCrossRefGoogle Scholar
  36. Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22:29–38PubMedCrossRefGoogle Scholar
  37. Ohta H, Shida K, Peng LY, Furusawa I, Shishiyama J, Aibara S, Morita Y (1990) The occurrence of lipid hydroperoxide-decomposing activities in rice and the relationship of such activities to the formation of antifungal substances. Plant CellPhysiol 31(8):1117–1122Google Scholar
  38. Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcriptional factors in tobacco with distinct transactivation functions. Plant Cell 12:393–404Google Scholar
  39. Pachlewski R, Pchlevska J (1974) Studies on symbiotic properties of mycorrhizal fungi of pine (Pinus sylvestris L.) with the aid of the method of mycorrhizal synthesis in pure cultures on agar. PhD Thesis. Forest Institute, WarsawGoogle Scholar
  40. Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F (2003) Analysis of expressed sequence tags from the ectomycorrhizal basidiomycete Laccaria bicolor and Pisolithus microcarpus. New Phytol 159:117–129CrossRefGoogle Scholar
  41. Peterson L, Bonfante P (1994) Comparative structure of vesicular-arbuscularmycorrhizas and ectomycorrhizas. In: Robson AD, Abbort LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestery. Kluwer, Dordrecht, pp 79–88Google Scholar
  42. Pinot F, Grant DF, Beetham JK, Parker AG, Borhan B, Landt S, Jones AD, Hammock BD (1995) Molecular and biochemical evidence for the involvement of the Asp333-His523 pair in catalytic mechanism of soluble epoxide hydrolase. J Biol Chem 270: 7968–7974Google Scholar
  43. Rosado SCS, Kropp BR, Piché Y (1994) Genetics of ectomycorrhizal symbiosis. I. Host plant variability and heritability of ectomycorrhizal root traits. New Phytol 126:105–110CrossRefGoogle Scholar
  44. Rupp LA, Mudge W (1985) Ethephon and auxin induce mycorrhiza-like changes in the morphology of root organ cultures of mugo pine. Physiol Plant 64:316–322CrossRefGoogle Scholar
  45. Rupp LA, DeVries HE, Mudge KW (1989) Effect of aminocyclopropane carboxylic acid and aminoethoxyvinylglycine on ethylene production by ectomycorrhizal fungi. Can J Bot 67:483–485CrossRefGoogle Scholar
  46. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234PubMedCrossRefGoogle Scholar
  47. Slankis V (1950) Effect of α-naphthalene-acetic acid on dichotomous branching of isolated roots of Pinus sylvestris. Physiol Plant 3:40–44CrossRefGoogle Scholar
  48. Smith SE, Reads DJ (eds) (1997) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  49. Solano R, Ecker JR (1998) Ethylene gas: perception, signaling and response. Cur Opin Plant Biol 1:393–398CrossRefGoogle Scholar
  50. Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:218–229CrossRefGoogle Scholar
  51. Tagu D, Faivre-Rampant P, Lapeyrie Frey-klett P, Vion P, Villar M (2001) Variation in the ability to form ectomycorrhizas in the F1 progeny of an interspecific poplar (Populus spp.) cross. Mycorrhiza 10:237–240CrossRefGoogle Scholar
  52. Tagu D, Palin B, Balestrini R, Gelhaye E, Lapeyrie F, Jacquot JP, Sautière PE, Bonfante P, Martin F (2003) Characterization of a symbiosis- and auxin-regulated glutathione-S-transferase from Eucalyptus globulus roots. Plant Physiol Biochem 41:611–618CrossRefGoogle Scholar
  53. Tagu D, Bastien C, Faivre-Rampant P, Garbaye J, Vion P, Villar M, Martin F (2005) Genetic analysis of phenotypic variation for ectomycorrhiza formation an interspecific F1 poplar full-sib family. Mycorrhiza 15:87–91PubMedCrossRefGoogle Scholar
  54. Tuskan GA, Gunter LE, Yang ZMK, Yin TM, Sewell MM, DiFazio SP (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J For Res 34:85–93CrossRefGoogle Scholar
  55. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao BD, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa. Science 313:1596–1604PubMedCrossRefGoogle Scholar
  56. Van der Schoot J, Pospiskova M, Vosman B, Smulders MJM (2000) Development and characterization of microsatellite markers in black poplar (Populus nigra L.). Theor Appl Genet 101:317–322CrossRefGoogle Scholar
  57. Villar M, Lefèvre F, Bradshaw HD, Teissier du Cros E (1996) Molecular genetics of rust resistance in poplars (Melampsora larici-populina Kleb/Populus sp.) by bulked segregant analysis in a 2 × 2 factorial mating design. Genetics 143:531–536PubMedGoogle Scholar
  58. Yin TM, DiFazio SP, Gunter LE, Jawdy SS, Tuskan GA (2004) Mapping the rust resistant loci MXC3 and MER in Populus trichocarpa and assessing the intermarker linkage disequilibrium in the MXC3 region. New Phytol 164:95–106CrossRefGoogle Scholar
  59. Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY Gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA)  2011

Authors and Affiliations

  • Jessy Labbé
    • 1
    • 3
    Email author
  • Véronique Jorge
    • 2
  • Annegret Kohler
    • 1
  • Patrice Vion
    • 1
  • Benoît Marçais
    • 1
  • Catherine Bastien
    • 2
  • Gerald A. Tuskan
    • 3
  • Francis Martin
    • 1
  • François Le Tacon
    • 1
  1. 1.UMR 1136, INRA-Nancy Université, Interactions Arbres/MicroorganismesINRA-NancyChampenouxFrance
  2. 2.Unité Amélioration Génétique et Physiologie ForestièreINRA-OrléansOlivet CedexFrance
  3. 3.BioSciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations