Tree Genetics & Genomes

, Volume 7, Issue 3, pp 469–484 | Cite as

Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea

  • Marie Bouillé
  • Sauphie Senneville
  • Jean Bousquet
Original Paper


The phylogeny of the genus Picea was investigated by sequencing three loci from the paternally inherited chloroplast genome (trnK, rbcL and trnTLF) and the intron 2 of the maternally transmitted mitochondrial gene nad1 for 35 species. Significant topological differences were found between the trnK tree and the rbcL and trnTLF phylogenetic trees, and between cpDNA and mtDNA phylogenies. None of the phylogenies matched morphological classifications. The mtDNA phylogeny was geographically more structured than cpDNA phylogenies, reflecting the different inheritance of the two cytoplasmic genomes in the Pinaceae and their differential dispersion by seed only and seed and pollen, respectively. Most North American taxa formed a monophyletic group on the mtDNA tree, with topological patterns suggesting geographic speciation by range fragmentation or by dispersal and isolation. Similar patterns were also found among Asian taxa. Such a trend towards geographic speciation is anticipated in other Pinaceae genera with similar life history, autecology and reproductive system. Incongruences between organelle phylogenies suggested the occurrence of mtDNA capture by invading cpDNA. Incongruences between cpDNA partitions further suggested heterologous recombination presumably also linked to ancient reticulate evolution. Whilst cpDNA appears potentially valuable for molecular taxonomy and systematics purposes, these results emphasize the reduced value of cpDNA to infer vertical descent and the speciation history for plants with paternal transmission and high dispersal of their chloroplast genome.


Allopatric speciation cpDNA mtDNA Phylogeny Reticulate evolution Pinaceae Spruce 



The authors thank T. Ward and J. Li (Arnold Arboretum, Boston, Massachusetts), E. Johnson (Holden Arboretum, Kirtland, Ohio), M. Chase and L. Csiba (Royal Botanic Garden, Kew, UK), F.T. Ledig (Univ. of California at Davis, Institute of Forest Genetics, USDA), J. Beaulieu and M. Deslauriers (Canadian Forest Service, Québec City), E. Morin (Botanical Garden of Montréal, Québec), D. Simpson and B. Daigle (National Tree Seed Centre, Fredericton, New Brunswick), P. Brownless (Royal Botanic Gardens, Edinburgh, UK), and S. Toomer (Westonbirt National Arboretum, Tetbury, UK) for providing plant materials; M. Lamothe and N. Tremblay (Canada Research Chair in Forest Genomics, Univ. Laval) for support in the laboratory; F. Larochelle, S. Larose and J. Laroche (Center for Bioinformatics and Computational Biology, Univ. Laval) for help with software and their analytical advices; S. González-Martínez and several reviewers for their constructive comments; and the Natural Sciences and Engineering Research Council of Canada for financial support.

Supplementary material

11295_2010_349_MOESM1_ESM.doc (127 kb)
Table S1 (DOC 127 KB)
11295_2010_349_MOESM2_ESM.doc (50 kb)
Table S2 (DOC 49.5 KB)
11295_2010_349_MOESM3_ESM.doc (34 kb)
Table S3 (DOC 34.5 KB)
11295_2010_349_Fig2_ESM.jpg (1.8 mb)
Figure S1

Position of PCR primers designed in this study to amplify the mitochondrial nad1 intron 2 (JPEG 1 873 kb)

11295_2010_349_MOESM4_ESM.eps (267 kb)
High-Resolution (EPS 273 836 kb)


  1. Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Kaji M (2007) Phylogeography of a northeast Asian spruce, Picea jezoensis, inferred from genetic variation observed in organelle DNA markers. Mol Ecol 16:3393–3405PubMedCrossRefGoogle Scholar
  2. Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Sabirov R, Kaji M (2009) Range-wide genetic structure in a north-east Asian spruce (Picea jezoensis) determined using nuclear microsatellite markers. J Biogeogr 36:996–1007CrossRefGoogle Scholar
  3. Aleksić JM, Geburek T (2010) Mitochondrial DNA reveals complex genetic structuring in a stenoendemic conifer Picea omorika [(Panč.) Purk.] caused by it long persistence within the refugial Balkan region. Plant Syst Evol 285:1–11CrossRefGoogle Scholar
  4. Bakker FT, Culham A, Pankhurst CE, Gibby M (2000) Mitochondrial and chloroplast DNA-based phylogeny of Pelargonium (Geraniaceae). Amer J Bot 87:727–734CrossRefGoogle Scholar
  5. Bennike O (1990) The Kap København formation: stratigraphy and paleobotany of a Plio-Pleistocene sequence in Peary Land, North Greenland. Medd Groenl Geosci 23:1–85Google Scholar
  6. Bennuah SY, Wang T, Aitken SN (2004) Genetic analysis of the Picea sitchensis × glauca introgression zone in British Columbia. For Ecol Manage 197:65–77CrossRefGoogle Scholar
  7. Bouillé M, Bousquet J (2005) Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Amer J Bot 92:63–73CrossRefGoogle Scholar
  8. Bousquet J, Strauss SH, Doerksen AH, Price RA (1992) Extensive variation in evolutionary rate of rbcL gene sequences among seed plants. Proc Natl Acad Sci USA 89:7844–7848PubMedCrossRefGoogle Scholar
  9. Bousquet J, Isabel N, Pelgas B, Cottrell J, Rungis D, Ritland K (2007) Spruce. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 7. Forest trees. Springer, Berlin, pp 93–114Google Scholar
  10. Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer, Sunderland, pp 232–243Google Scholar
  11. Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260PubMedCrossRefGoogle Scholar
  12. Bruch AA, Utescher T, Mosbrugger V, Gabrielyan I, Ivanov DA (2006) Late Miocene climate in the circum-Alpine realm—a quantitative analysis of terrestrial palaeofloras. Palaeogeogr Palaeoclimatol Palaeoecol 238:270–280CrossRefGoogle Scholar
  13. Campbell CS, Wright WA, Cox M, Vining TF, Smooth Major C, Arsenault MP (2005) Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure. Mol Phylogenet Evol 35:165–185PubMedCrossRefGoogle Scholar
  14. Chang DHS (1983) The Tibetan Plateau in relation to the vegetation of China. Ann Mo Bot Gard 70:564–570CrossRefGoogle Scholar
  15. Chat J, Jauregui B, Petit RJ, Nadot S (2004) Reticulate evolution in kiwifruit (Actinidia, Actinidiaceae) identified by comparing their maternal and paternal phylogenies. Amer J Bot 91:736–747CrossRefGoogle Scholar
  16. Chen J, Kallman T, Gyllenstrand N, Lascoux M (2010) New insights on the speciation history and nucleotide diversity of three boreal spruce and a Tertiary relict. Heredity 104:3–14PubMedCrossRefGoogle Scholar
  17. Comtois P (1997) Pollen dispersal and long distance transport: the case of thermophilic pollen in subarctic Canada. Aerobiologia 13:37–42CrossRefGoogle Scholar
  18. Dancik BP, Yeh FC (1983) Allozyme variability and evolution of lodgepole pine (Pinus contorta var. latifolia) and jack pine (P. banksiana) in Alberta. Can J Genet Cytol 25:57–64Google Scholar
  19. Donoghue MJ, Bell CD, Li J (2001) Phylogenetic patterns in Northern Hemisphere plant geography. Int J Plant Sci 162:S41–S52CrossRefGoogle Scholar
  20. Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol Ecol 18:1396–1407PubMedCrossRefGoogle Scholar
  21. Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Regnum Veg 121:1–330Google Scholar
  22. Farjon A (2001) World checklist and bibliography of conifers, 2nd edn. Royal Botanical Garden, Richmond, pp 150–167Google Scholar
  23. Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  24. Frankis MP (1989) Genetic inter-relationships in Pinaceae. Notes R Bot Gard Edinb 45:527–548Google Scholar
  25. Freudenstein JV, Chase MW (2001) Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: utility and coding of length-change characters. Syst Bot 26:643–657Google Scholar
  26. Gamache I, Payette S, Bousquet J (2003) Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: imprint of a founder effect associated with postglacial colonization. Mol Ecol 12:891–901PubMedCrossRefGoogle Scholar
  27. Gérardi S, Jaramillo-Correa JP, Beaulieu J, Bousquet J (2010) From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce. doi: 10.1111/j.1365-294X.2010.04881.x
  28. Gernandt DS, López GG, Garcia SO, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42CrossRefGoogle Scholar
  29. Gordon AG (1976) The taxonomy and genetics of Picea rubens and its relationship to Picea mariana. Can J Bot 54:781–813CrossRefGoogle Scholar
  30. Gordon AG (1986) Breeding, genetics and genecological studies in spruce for tree improvement in 1983 and 1984, Sault Ste.Marie, Ontario. In: Proc. 20th Meet Can Tree Improve Assoc. Part 1. CTIA, Québec City, pp 112–116Google Scholar
  31. Gros-Louis M-C, Bousquet J, Pâques LE, Isabel N (2005) Species-specific diagnostic markers in Larix spp. based on RAPDs and nuclear, cpDNA and mtDNA gene sequences, and their phylogenetic implications. Tree Genet Genomes 1:50–63CrossRefGoogle Scholar
  32. Guillet-Claude C, Isabel N, Pelgas B, Bousquet J (2004) The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping and analysis of functional divergence. Mol Biol Evol 21:2232–2245PubMedCrossRefGoogle Scholar
  33. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124CrossRefGoogle Scholar
  34. Hamzeh M, Dayanandan S (2004) Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast tnrT-trnF region and nuclear rDNA. Amer J Bot 91:1398–1408CrossRefGoogle Scholar
  35. Hipp AL, Hall JC, Systma KJ (2004) Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. Syst Biol 53:81–89PubMedCrossRefGoogle Scholar
  36. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinform Appl Note 17:754–755Google Scholar
  37. Isabel N, Beaulieu J, Bousquet J (1995) Complete congruence between gene diversity estimates derived from genotypic data at enzyme and RAPD loci in black spruce. Proc Natl Acad Sci USA 92:6369–6373PubMedCrossRefGoogle Scholar
  38. Jaramillo-Correa JP, Beaulieu J, Bousquet J (2001) Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 10:2729–2740PubMedCrossRefGoogle Scholar
  39. Jaramillo-Correa JP, Bousquet J (2003) New evidence from mitochondrial DNA of a progenitor–derivative species relationship between black spruce and red spruce (Pinaceae). Amer J Bot 90:1801–1806CrossRefGoogle Scholar
  40. Jaramillo-Correa JP, Bousquet J, Beaulieu J, Isabel N, Perron M, Bouillé M (2003) Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. Theor Appl Genet 106:1353–1367PubMedGoogle Scholar
  41. Jaramillo-Correa JP, Beaulieu J, Ledig FT, Bousquet J (2006) Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Mol Ecol 15:2787–2800PubMedCrossRefGoogle Scholar
  42. Kobayashi K, Yoshikawa J, Suzuki M (2000) DNA identification of Picea species of the Last Glacial Age in northern Japan. Jpn J Hist Bot 8:67–80Google Scholar
  43. Krutovskii KV, Bergmann F (1995) Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74:464–480CrossRefGoogle Scholar
  44. Laroche J, Li P, Maggia L, Bousquet J (1997) Molecular evolution of angiosperm mitochondrial exons and introns. Proc Natl Acad Sci USA 94:5722–5727PubMedCrossRefGoogle Scholar
  45. Ledig FT, Hodgskiss PD, Krutovskii KV, Neale DB, Eguiluz-Piedra T (2004) Relationships among the spruces (Picea, Pinaceae) of Southwestern North America. Syst Bot 29:275–295CrossRefGoogle Scholar
  46. LePage BA (2001) New species of Picea A. Dietrich (Pinaceae) from the Middle Eocene of Axel Heiberg Island, Arctic Canada. Bot J Linn Soc 135:137–167CrossRefGoogle Scholar
  47. LePage BA (2003) A new species of Tsuga (Pinaceae) from the middle Eocene of Axel Heiberg Island, Canada, and an assessment of the evolution and biogeographical history of the genus. Bot J Linn Soc 141:257–296CrossRefGoogle Scholar
  48. Liston A, Parker-Defeniks M, Syring JV, Willyard A, Cronn R (2007) Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: a case study in Pinus lambertiana. Mol Ecol 16:3926–3937PubMedCrossRefGoogle Scholar
  49. Liu TS (1982) A new proposal for the classification of the genus Picea. Acta Phytotax Geobot 33:227–244Google Scholar
  50. Ma XF, Szmidt AE, Wang XR (2006) Genetic structure and evolutionary history of a diploid hybrid pine Pinus densata inferred from the nucleotide vaiation at seven gene loci. Mol Biol Evol 23:807–816PubMedCrossRefGoogle Scholar
  51. Marshall HD, Newton C, Ritland K (2001) Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. Mol Biol Evol 18:2136–2138PubMedGoogle Scholar
  52. Mikkola L (1969) Observations on interspecific sterility in Picea. Ann Bot Fenn 6:285–339Google Scholar
  53. Mitton JB, Andalora R (1981) Genetic and morphological relationships between blue spruce, Picea pungens, and Engelmann spruce, Picea engelmannii, in the Colorado Front Range. Can J Bot 59:2088–2094CrossRefGoogle Scholar
  54. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Amer J Bot 83:383–404CrossRefGoogle Scholar
  55. Nasri N, Bojovic S, Vendramin GG, Fady B (2008) Population genetic structure of the relict Serbian spruce, Picea omorika, inferred from plastid DNA. Pl Syst Evol 271:1–7CrossRefGoogle Scholar
  56. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre. Uppsala University, SwedenGoogle Scholar
  57. OECD (1999) Consensus document on the biology of Picea glauca (Moench) Voss (white spruce). Series on Harmonization of Regulatory Oversight in Biotechnology No. 13, eds. Joint Meet. Chemicals Committee and Working Party on Chemicals (Environ. Direct., OECD Environ. Health and Safety Publ.), Paris, France, 45 ppGoogle Scholar
  58. Okuyama Y, Fujii N, Wakabayashi M, Kawakita A, Ito M, Watanabe M, Murakami N, Kato M (2004) Nonuniform concerted evolution and chloroplast capture: heterogeneity of observed introgression patterns in three molecular data partition phylogenies of Asian Mitella (Saxifragaceae). Mol Biol Evol 22:285–296PubMedCrossRefGoogle Scholar
  59. Page C, Hollands RC (1987) The taxonomic and biogeographic position of Sitka spruce. Proc Roy Soc Edinb 93B:13–24Google Scholar
  60. Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N (2006) Comparative genome mapping between Picea glauca, P. abies and P. mariana X rubens, and correspondance with other Pinaceae. Theor Appl Genet 113:1371–1393PubMedCrossRefGoogle Scholar
  61. Perron M, Bousquet J (1997) Natural hybridization between black spruce and red spruce. Mol Ecol 6:725–734CrossRefGoogle Scholar
  62. Perron M, Perry DJ, Andalo C, Bousquet J (2000) Evidence from sequence-tagged-site markers of a recent progenitor–derivative species pair in conifers. Proc Natl Acad Sci USA 97:11331–11336PubMedCrossRefGoogle Scholar
  63. Perry DJ, Bousquet J (2001) Genetic diversity and mating system of post-fire and post-harvest black spruce: an investigation using codominant sequence-tagged site (STS) markers. Can J For Res 31:32–40CrossRefGoogle Scholar
  64. Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393PubMedCrossRefGoogle Scholar
  65. Qiao CY, Ran JH, Li Y, Wang XQ (2007) Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Ann Bot 100:573–580PubMedCrossRefGoogle Scholar
  66. Quinn CJ, Price RA, Gadek PA (2002) Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bull 57:513–531CrossRefGoogle Scholar
  67. Rajora OP, Dancik BP (2000) Population genetic variation, structure, and evolution in Engelmann spruce, white spruce, and their natural hybrid complex in Alberta. Can J Bot 78:768–780Google Scholar
  68. Ran JH, Wei XX, Wang XQ (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Mol Phylogenet Evol 41:405–419PubMedCrossRefGoogle Scholar
  69. Ravazzi C (2002) Late Quaternary history of spruce in southern Europe. Rev Palaeobot Palynol 120:131–177CrossRefGoogle Scholar
  70. Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Plants 5:65–84Google Scholar
  71. Ruddiman WF, Kutzbach JE (1991) Plateau uplift and climatic change. Sci Amer 264:66–75CrossRefGoogle Scholar
  72. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  73. Schmidt-Vogt H (1977) Die Fichte. Book 1. Taxonomie, Verbreitung, Morphologie, Ökologie, Waldgesellschaften. Verlag Parey, HamburgGoogle Scholar
  74. Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot 22:259–290CrossRefGoogle Scholar
  75. Semerikov VL, Zhang H, Sun M, Lascoux M (2003) Conflicting phylogenies of Larix (Pinaceae) based on cytoplasmic and nuclear DNA. Mol Phylogenet Evol 27:173–184PubMedCrossRefGoogle Scholar
  76. Sigurgeirsson A, Szmidt AE (1993) Phylogenetic and biogeographic implications of chloroplast DNA variation in Picea. Nord J Bot 13:233–246CrossRefGoogle Scholar
  77. Soltis DE, Soltis PS, Collier TG, Edgerton ML (1991) Chloroplast DNA variation within and among genera of the Heuchera group (Saxifragaceae): evidence for chloroplast transfer and paraphyly. Amer J Bot 78:1091–1112CrossRefGoogle Scholar
  78. Sutton BCS, Flanagan DJ, Gawley JR, Newton CH, Lester DT, El-Kassaby YA (1991) Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones. Theor Appl Genet 82:242–248CrossRefGoogle Scholar
  79. Swofford DL (2001) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b8. Sinauer Associates, SunderlandGoogle Scholar
  80. Syring J, del Castillo RF, Cronn R, Liston A (2007) Multiple nuclear loci reveal the distinctiveness of the threatened, neotropical Pinus chiapensis. Syst Bot 32:703–717CrossRefGoogle Scholar
  81. Taylor RJ, Patterson TF (1980) Biosystematics of Mexican spruce species and populations. Taxon 29:421–469CrossRefGoogle Scholar
  82. Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution 37:221–244CrossRefGoogle Scholar
  83. Tsutsui K, Suwa A, Sawada K, Kato T, Ohsawa TA, Watano Y (2009) Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae). J Plant Res 122:509–521PubMedCrossRefGoogle Scholar
  84. Wang X-R, Szmidt AE (1994) Hybridization in chloroplast DNA variation in a Pinus species complex from Asia. Evolution 48:1020–1031CrossRefGoogle Scholar
  85. Wang X-R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. Amer J Bot 86:1742–1753CrossRefGoogle Scholar
  86. Weng C, Jackson ST (2000) Species differentiation of North American spruce (Picea) based on morphological and anatomical characteristics of needles. Can J Bot 78:1367–1383Google Scholar
  87. Wei XX, Wang XQ (2003) Phylogenetic split of Larix: evidence from paternally inherited cpDNA trnT-trnF region. Plant Syst Evol 239:67–77CrossRefGoogle Scholar
  88. Wright JW (1955) Species crossability in spruce in relation to distribution and taxonomy. For Sci 1:319–349Google Scholar
  89. Zhang D, Fengquan L, Jianmin B (2000) Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. Environ Geol 39:1352–1358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marie Bouillé
    • 1
  • Sauphie Senneville
    • 1
  • Jean Bousquet
    • 1
    • 2
  1. 1.Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Integrative and Systems BiologyUniversité LavalQuébecCanada
  2. 2.Pavillon Charles-Eugène-MarchandUniversité LavalQuébecCanada

Personalised recommendations