Advertisement

Tree Genetics & Genomes

, Volume 7, Issue 2, pp 373–384 | Cite as

Organization of the chromosome region harboring a FLORICAULA/LEAFY gene in Liriodendron

  • Haiying LiangEmail author
  • Abdelali Barakat
  • Scott E. Schlarbaum
  • John E. Carlson
Original Paper

Abstract

FLORICAULA/LEAFY (FLO/LFY) plays an important role in the reproductive transition and controls flower spatial patterning by inducing the expression of the ABC floral organ identity genes. In this study, we sequenced two bacterial artificial chromosomes harboring a FLO/LFY and three other genes from yellow-poplar (Liriodendron tulipifera L.) and compared the gene order in this locus between several species. Besides the conserved terminal domains, key residues involved in interactions with DNA bases, backbone, and in dimerization were also conserved in the yellow-poplar FLO/LFY. Phylogenetic analysis of the FLO/LFY amino acid sequences placed yellow-poplar closer to eudicots than to monocotyledonous species. We found that gene content and order in this region of the yellow-poplar genome was more similar to corresponding regions in Vitis vinifera L., Carica papaya L., Populus trichocarpa Torr. & Gray, and Ricinus communis L., regardless of the evolutionary relationship. In addition, evidence for transposition, large insertions, and duplications were found, suggesting multiple and complex mechanisms of basal angiosperm genome evolution.

Keywords

Microsynteny Gene content Gene organization Genome evolution Liriodendron Yellow-poplar 

Notes

Acknowledgments

The authors were grateful to James H. Leebens-Mack and Claude W. dePamphilis for providing the LtuLFY cDNA sequence and its 454 sequencing reads. This study was supported by the Schatz Center for Tree Molecular Genetics at The Pennsylvania State University, the University of Tennessee Tree Improvement Program, and the National Institute of Food and Agriculture, USDA (under project number SC-1700324, technical contribution no. 5756 of the Clemson University Experiment Station).

Supplementary material

11295_2010_338_MOESM1_ESM.pdf (676 kb)
ESM 1 (PDF 676 kb)

References

  1. Allnutt GV, Rogers HJ, Francis D, Herbert RJ (2007) A LEAFY-like gene in the long-day plant, Silene coeli-rosa is dramatically up-regulated in evoked shoot apical meristems but does not complement the Arabidopsis lfy mutant. J Exp Bot 58:2249–2259PubMedCrossRefGoogle Scholar
  2. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  3. Bae K, Byun J (1987) Screening of leaves of higher plants for antibacterial action. Kor J Pharmacogn 8:1Google Scholar
  4. Berlin A, Maximenko V, Bura R, Kang KY, Gilkes N, Saddler J (2005) A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 93:880–886CrossRefGoogle Scholar
  5. Blázquez M, Weigel D (2000) Integration of floral inductive signals in Arabidopsis. Nature 404:889–892PubMedCrossRefGoogle Scholar
  6. Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395PubMedCrossRefGoogle Scholar
  7. Busch A, Gleissberg S (2003) EcFLO, a FLORICAULA-like gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot apex. Planta 217:841–848PubMedCrossRefGoogle Scholar
  8. Celen I, Harper D, Labbé N (2008) A multivariate approach to the acetylated poplar wood samples by near infrared spectroscopy. Holzforschung 62:189–196CrossRefGoogle Scholar
  9. Dong ZC, Zhao Z, Liu C-W, Luo J-H, Yang J, Huang W-H, Hu X-H, Wang T-L, Luo D (2005) Floral patterning in Lotus japonicas. Plant Physiol 137:1272–1282PubMedCrossRefGoogle Scholar
  10. Doskotch RW, eI-Feraly FS, Fairchild EH, Huang CT (1977) Isolation and characterization of peroxyferolide, a hydroperoxy sesquiterpene lactone from Liriodendron tulipifera. J Org Chem 42:3614–3618CrossRefGoogle Scholar
  11. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
  12. Endress PK, Igersheim A (2000) Gynoecium structure and evolution in basal angiosperms. Int J Plant Sci 161:S211–S223CrossRefGoogle Scholar
  13. Frohlich MW, Meyerowitz EM (1997) The search for flower homeotic gene homologs in basal angiosperms and gnetales: a potential new source of data on the evolutionary origin of flowers. Int J Plant Sci 158:S131–S142CrossRefGoogle Scholar
  14. Frohlich MW, Parker DS (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25:155–170CrossRefGoogle Scholar
  15. Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189PubMedCrossRefGoogle Scholar
  16. Gerber H, Seipel K, Georgiev O, Hofferer M, Hug M, Rusconi S, Schaffner W (1994) Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263:808–811PubMedCrossRefGoogle Scholar
  17. Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801PubMedCrossRefGoogle Scholar
  18. Goff S, Ricke D, Lan TH, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  19. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  20. Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel JL, Benlloch R, Parcy F, Müller CF (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27:2628–2637PubMedCrossRefGoogle Scholar
  21. Harlow WM, Harrar ES (1969) Textbook of dendrology. McGraw-Hill, New York, p 512Google Scholar
  22. He Z, Zhu Q, Dabi T, Li D, Weigel D, Lamb CJ (2000) Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Res 9:223–227PubMedCrossRefGoogle Scholar
  23. Hebsgaard SM, Korning PG, Tolstru N, Engelbrecht J, Rouze P, Brunak S (1996) Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucl Acids Res 24:3439–3452PubMedCrossRefGoogle Scholar
  24. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res 27:297–300PubMedCrossRefGoogle Scholar
  25. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587PubMedCrossRefGoogle Scholar
  26. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  27. Hufford CD, Funderburk MJ (1974) Nonbasic aporphine alkaloids from Liriodendron tulipifera L. J Pharm Sci 63:1338–1339PubMedCrossRefGoogle Scholar
  28. Hufford CD, Funderburk MJ, Morgan JM, Robertson LW (1975) Two antimicrobial alkaloids from heartwood of Liriodendron tulipifera L. J Pharm Sci 64:789–792PubMedCrossRefGoogle Scholar
  29. Hunt D (ed) (1998) Magnolias and their allies. International Dendrology Society & Magnolia Society, England, pp 304Google Scholar
  30. Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomic 10:76CrossRefGoogle Scholar
  31. Karlin S, Campbell AM, Mrázek J (1998) Comparative DNA analysis across diverse genomes. Ann Rev Gen 32:185–225CrossRefGoogle Scholar
  32. Kim KD, Lee EJ (2005) Potential tree species for use in the restoration of unsanitary landfills. Environ Manage 36:1–14PubMedCrossRefGoogle Scholar
  33. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474CrossRefGoogle Scholar
  34. Kyozuka J, Konishi S, Nemoto K, Izawa T, Shimamoto K (1998) Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. PNAS 95:1979–1982PubMedCrossRefGoogle Scholar
  35. Lai CW, Yu Q, Hou S, Skelton RL, Jones MR, Lewis KL, Murray J, Eustice M, Guan P, Agbayani R, Moore PH, Ming R, Presting GG (2006) Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol Genet Genomics 276:1–12PubMedCrossRefGoogle Scholar
  36. Liang H, Feng EG, Tomkins JP, Arumuganathan K, Zhao S, Luo M, Kudrna D, Wing R, Banks J, dePamphilis CW, Mandoli D, Schlarbaum S, Carlson JE (2007) Development of a BAC library resource for yellow-poplar (Liriodendron tulipifera) and the identification of genomic regions associated with flower development and lignin biosynthesis. Tree Genet Genomes 3:215–225CrossRefGoogle Scholar
  37. Liang H, Carlson JE, Leebens-Mack JH, Wall PK, Mueller LA, Buzgo M, Landherr LL, Hu Y, DiLoreto DS, Ilut DC, Field D, Tanksley SD, Ma H, dePamphilis CW (2008) An EST database for Liriodendron tulipifera L. floral buds: the first EST resource for functional and comparative genomics in Liriodendron. Tree Genet Genomes 4:419–433CrossRefGoogle Scholar
  38. Liang H, Barakat A, Schlarbaum SE, Mandoli DF, Carlson JE (2010a) Comparison of gene order of GIGANTEA loci in yellow-poplar, monocots, and eudicots. Genome 53:533–544CrossRefGoogle Scholar
  39. Liang H, Zhebentyayeva T, Olukolu B, Wilde D, Reighard GL, Abbott A (2010b) Comparison of gene order in the chromosome region containing a Terminal Flowering1 homolog in apricot and peach reveals microsynteny across angiosperms. Plant Sci 179:390–398CrossRefGoogle Scholar
  40. Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16:711–722PubMedCrossRefGoogle Scholar
  41. Maizel A, Busch MA, Tanahashi T, Perkovic J, Kato M, Hasebe M, Weigel D (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308:260–263PubMedCrossRefGoogle Scholar
  42. Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites, and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–770PubMedCrossRefGoogle Scholar
  43. Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676PubMedCrossRefGoogle Scholar
  44. Moon MK, Oh HM, Kwon BM, Baek NI, Kim SH, Kim JS, Kim DK (2007) Farnesyl protein transferase and tumor cell growth inhibitory activities of lipiferolide isolated from Liriodendron tulipifera. Arch Pharm Res 30:299–302PubMedCrossRefGoogle Scholar
  45. Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002PubMedCrossRefGoogle Scholar
  46. Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, Teasdale RD (1998) NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA 95:6537–6542PubMedCrossRefGoogle Scholar
  47. Ovcharenko I, Loots GG, Giardine BM, Hou M, Ma J, Hardison RC, Stubbs L, Miller W (2005) Mulan: multiple-sequence local alignment and visualization for studying function and evolution. Genome Res 15:184–194PubMedCrossRefGoogle Scholar
  48. Parks CR, Wendel JF (1990) Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Am J Bot 77:1243–1256CrossRefGoogle Scholar
  49. Pedersen AG, Nielsen H (1997) Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. Proc Int Conf Intell Syst Mol Biol 5:226–233PubMedGoogle Scholar
  50. Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, Tikhonov A, Huson D, Tomsho LP, Auch A, Rampp M, Miller W, Schuster SC (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 331:392–394CrossRefGoogle Scholar
  51. Ríos G, Naranjo MA, Iglesias DJ, Ruiz-Rivero O, Geraud M, Usach A, Talón M (2008) Characterization of hemizygous deletions in Citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome. BMC Genomics 9:381PubMedCrossRefGoogle Scholar
  52. SanMiguel PJ, Ramakrishna W, Bennetzen JL, Busso SC, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct Integr Genomics 2:70–80PubMedCrossRefGoogle Scholar
  53. Shindo S, Sakakibara K, Sano R, Ueda K, Hasebe M (2001) Characterization of a LORICAULA/LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. Int J Plant Sci 162:1199–1209CrossRefGoogle Scholar
  54. Solovyev VV, Shahmuradov IA (2003) PromH: promoter identification using orthologous genomic sequences. Nucl Acids Res 31:3540–3545PubMedCrossRefGoogle Scholar
  55. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL and atpB sequences. Bot J Linn Soc 133:381–461Google Scholar
  56. Tanahashi T, Sumikawa N, Kato M, Hasebe M (2005) Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development 132:1727–1736PubMedCrossRefGoogle Scholar
  57. Tuskan G, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  58. Vetrivel U, Arunkumar V, Dorairaj S (2007) ACUA: a software tool for automated codon usage analysis. Bioinformation 2:62–63PubMedGoogle Scholar
  59. Wada W, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577PubMedCrossRefGoogle Scholar
  60. Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol 146:1759–1772PubMedCrossRefGoogle Scholar
  61. Wong GK, Wang J, Tao L, Tan J, Zhang J et al (2002) Compositional gradients in Gramineae genes. Genome Res 12:851–856PubMedCrossRefGoogle Scholar
  62. Xiang Q, Lee LYY, Torget RW (2004) Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol 114:1127–1138CrossRefGoogle Scholar
  63. Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  64. Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis D, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Haiying Liang
    • 1
    • 2
    Email author
  • Abdelali Barakat
    • 2
  • Scott E. Schlarbaum
    • 3
  • John E. Carlson
    • 2
    • 4
  1. 1.Department of Genetics and BiochemistryClemson UniversityClemsonUSA
  2. 2.School of Forest Resources and Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Forestry, Wildlife & Fisheries, Institute of AgricultureThe University of TennesseeKnoxvilleUSA
  4. 4.The Department of Bioenergy Science and Technology (WCU)Chonnam National UniversityGwangjuSouth Korea

Personalised recommendations