Tree Genetics & Genomes

, Volume 7, Issue 2, pp 323–335

QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect

  • Iban Eduardo
  • Igor Pacheco
  • Giorgiana Chietera
  • Daniele Bassi
  • Carlo Pozzi
  • Alberto Vecchietti
  • Laura Rossini
Original Paper

Abstract

Two intraspecific peach breeding populations have been used to conduct a quantitative trait locus (QTL) analysis of fruit quality traits: an F1 from the cross Bolero (B) x OroA (O) and an F2 from the cross Contender (C) x Ambra (A). A total of 344 Prunus simple sequence repeats (SSRs) were analyzed in B, O, C, A parents and CxA F1 hybrid. Eight SSR were mapped for the first time in peach. A multiplex-ready polymerase chain reaction (PCR) protocol has allowed considerable time and cost saving during genotyping steps. Two maps (B map and O map) were produced for BxO population following the pseudo-test cross strategy and one for CxA. No marker could be mapped on G6 for the B map, on G4 and G8 for the O map and on G5 for the CxA map. Both populations were phenotyped over 2 years for maturity date (MD), fruit weight, external fruit skin overcolor, juice total soluble solids (SSC, Brix degree), juice titrable acidity and juice pH. Data for blooming time and flower type were scored only for BxO in 2007. All traits had a normal distribution, except for MD which was bimodal in BxO and trimodal in CxA, where it was scored as a co-dominant trait. Up to two QTLs per trait were detected in each population, and most of them were located in the same region forming clusters of QTLs, especially on G4. This is likely due to a major pleiotropic effect of MD masking the identification of other QTLs for different traits.

Keywords

Breeding Genomics Assisted selection Prunus persica (Batsch.) L. SSR Maturity date Peach Quality traits Molecular maps 

Supplementary material

11295_2010_334_MOESM1_ESM.doc (9.3 mb)
ESM 1(DOC 9545 kb)

References

  1. Abbott A, Rajapaske S, Sosinski B, Lu ZX, Sossy-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465:41–49Google Scholar
  2. Abbott AG, Arús P, Scorza R (2008) Genetic engineering and genomics. In: Desmond RL, Bassi D (eds) The peach: botany, production and uses. CABI, UK, pp 85–105CrossRefGoogle Scholar
  3. Aranzana MJ, Pineda A, Cosson P, Ascasibar J, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arùs P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  4. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005) Synteny in the Rosaceae. In: Janick J (ed) Plant Breeding Reviews. Wiley, London, pp 175–211Google Scholar
  5. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. Plant Breed Rev 27: 175–211Google Scholar
  6. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970PubMedCrossRefGoogle Scholar
  7. Bassi D, Gambardella M, Negri P (1988) Date of ripening and two morphological fruit traits in peach progenies. Acta Hort 254:59–66Google Scholar
  8. Beckman TG, Sherman WB (2003) Probable qualitative inheritance of full red skin color in peach. HortScience 38:1184–1185Google Scholar
  9. Beckman TG, Rodriguez AJ, Sherman WB, Werner DJ (2005) Evidence for qualitative suppression of red skin color in peach. HortScience 40:523–524Google Scholar
  10. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, Abbott A (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350CrossRefGoogle Scholar
  11. Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59PubMedCrossRefGoogle Scholar
  12. Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Amer Soc Hort Sci 126:205–209Google Scholar
  13. Cipriani G, Lot G, Huang WG, Matarazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: Isolation, characterisation and cross species amplification in Prunus. Theor Appl Genet 99:65–72Google Scholar
  14. Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580CrossRefGoogle Scholar
  15. Clarke J, Sargent D, Bošković R, Belaj A, Tobutt K (2009) A cherry map from the interspecific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, genespecific and isoenzyme markers. Tree Genet Genomes 5:41–51CrossRefGoogle Scholar
  16. Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic-map. Genetics 134:943–951PubMedGoogle Scholar
  17. Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] x Prunus davidiana hybrids. Theor Appl Genet 93:909–919CrossRefGoogle Scholar
  18. Dirlewanger E, Pronier V, Parvery C, Rothan C, Guy A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888–895CrossRefGoogle Scholar
  19. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet C (1999) Mapping QTLs controlling fruit quality in peach. Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  20. Dirlewanger E, Cosson P, Tavaud M, Aranzana J, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [ Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry ( Prunus avium L.). Theor Appl Genet 105:127–138PubMedCrossRefGoogle Scholar
  21. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 29:9891–9896CrossRefGoogle Scholar
  22. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics Genomes 3:1–13CrossRefGoogle Scholar
  23. Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Amer Soc Hort Sci 125:76–80Google Scholar
  24. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transription factor, MdMYB10. Plant J 49:414–427PubMedCrossRefGoogle Scholar
  25. Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  26. Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni A, Stover E, Bell R, Wisniewski M, Korban S (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411CrossRefGoogle Scholar
  27. Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745CrossRefGoogle Scholar
  28. Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008) Multiplex-ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9:80PubMedCrossRefGoogle Scholar
  29. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  30. Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arús P (2009) Linkage map saturation, construction, and comparison in four populations of Prunus. J Hortic Sci Biotech 84:168–175Google Scholar
  31. Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genomics 10:76PubMedCrossRefGoogle Scholar
  32. Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity 80:137–142PubMedCrossRefGoogle Scholar
  33. Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics Genome 4:647–661CrossRefGoogle Scholar
  34. Kim SH, Lee JR, Hong ST, Yoo YK, An G, Kim SR (2003) Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci 165:403–413CrossRefGoogle Scholar
  35. Lopes MS, Sefc KM, Laimer M, Machado AD (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2(1):24–26Google Scholar
  36. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432-434CrossRefGoogle Scholar
  37. Mnejja M, Garcia-Mas J, Howad W, Arus P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5:531–535CrossRefGoogle Scholar
  38. Monet R (1979) Genetic transmission of the “non-acid” character. Incidence on selection for quality. In: InRA (ed) Eucarpia symposium on tree fruit breeding, angers., pp 273–276Google Scholar
  39. Monforte AJ, Asins MJ, Carbonell EA (1999) Salt tolerance in Lycopersicon spp. VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98:593–601CrossRefGoogle Scholar
  40. Morgutti S, Negrini N, Nocito FF, Ghiani A, Bassi D, Cocucci M (2006) Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes. New Phytol 171:315–328PubMedCrossRefGoogle Scholar
  41. Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet Genomes 4:543–554. doi:10.1007/s11295-007-0130-0 CrossRefGoogle Scholar
  42. Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587PubMedCrossRefGoogle Scholar
  43. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21–31CrossRefGoogle Scholar
  44. Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 521:233–241Google Scholar
  45. Quilot B, Wu BH, Kervella J, Genard M, Foulogne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897PubMedCrossRefGoogle Scholar
  46. R Development Core Team (2008) R: a language and environment for statistical computing. Version 2.7.1. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed January 2009
  47. Rodriguez GA, Sherman WB (1990) ‘OroA’ peach germplasm. Hortscience 25:128Google Scholar
  48. Sanchez-Perez R, Howad W, Dicenta F, Arus P, Martinez-Gomez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318CrossRefGoogle Scholar
  49. Sargent DJ, Fernàndez-Fernàndez F, Rys A, Knight VH, Simpson DW, Tobutt KR (2007) Mapping of A1 conferring resistance to the aphid Amphorophora idaei and dw (dwarfing habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biol 7:15PubMedCrossRefGoogle Scholar
  50. Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110:547–552Google Scholar
  51. Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232PubMedCrossRefGoogle Scholar
  52. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43(3):512–520Google Scholar
  53. Testolin R, Messina R, Lain O, Marrazzo MT, Huang WG, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461CrossRefGoogle Scholar
  54. Van Ooijen JW (2006) JoinMap ® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, NetherlandsGoogle Scholar
  55. Van Ooijen JW (2009) MapQTL ® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen, NetherlandsGoogle Scholar
  56. Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431CrossRefGoogle Scholar
  57. Vecchietti A, Lazzari B, Ortugno C, Bianchi F, Caprera A, Malinverni R, Mignani I, Pozzi C (2009) Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L.). Tree Genet Genomes 5:377–391CrossRefGoogle Scholar
  58. Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–295Google Scholar
  59. Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)]xP. ferganensis BC(1)linkage map: saturation and coverage improvement. Theor Appl Genet 11:1013–1021CrossRefGoogle Scholar
  60. Vilanova S, Sargent DJ, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67PubMedCrossRefGoogle Scholar
  61. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  62. Xu Y, Ma RC, Xie H, Liu JT, Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47:1091–1104PubMedCrossRefGoogle Scholar
  63. Xu Y, Zhang L, Xie H, Zhang YQ, Olivieira M, Ma RC (2008) Expression analysis and genetic mapping of three SEPALLATA -like genes from peach (Prunus persica (L.) Batsch). Tree Genetics & Genomes 4:693–703CrossRefGoogle Scholar
  64. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278CrossRefGoogle Scholar
  65. Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Jpn Soc Hort Sci 74:204–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Iban Eduardo
    • 1
    • 3
  • Igor Pacheco
    • 2
  • Giorgiana Chietera
    • 2
  • Daniele Bassi
    • 2
  • Carlo Pozzi
    • 1
  • Alberto Vecchietti
    • 1
  • Laura Rossini
    • 2
  1. 1.Parco Tecnologico PadanoLodiItaly
  2. 2.Dipartimento di Produzione VegetaleUniversità degli Studi di MilanoMilanItaly
  3. 3.IRTA. Centre de Recerca en Agrigenòmica CSIC-IRTA-UABCabrils, BarcelonaSpain

Personalised recommendations