Tree Genetics & Genomes

, Volume 7, Issue 2, pp 241–255 | Cite as

Genomic selection in forest tree breeding

Original Paper


Genomic selection (GS) involves selection decisions based on genomic breeding values estimated as the sum of the effects of genome-wide markers capturing most quantitative trait loci (QTL) for the target trait(s). GS is revolutionizing breeding practice in domestic animals. The same approach and concepts can be readily applied to forest tree breeding where long generation times and late expressing complex traits are also a challenge. GS in forest trees would have additional advantages: large training populations can be easily assembled and accurately phenotyped for several traits, and the extent of linkage disequilibrium (LD) can be high in elite populations with small effective population size (N e) frequently used in advanced forest tree breeding programs. Deterministic equations were used to assess the impact of LD (modeled by N e and intermarker distance), the size of the training set, trait heritability, and the number of QTL on the predicted accuracy of GS. Results indicate that GS has the potential to radically improve the efficiency of tree breeding. The benchmark accuracy of conventional BLUP selection is reached by GS even at a marker density ~2 markers/cM when N e ≤ 30, while up to 20 markers/cM are necessary for larger N e. Shortening the breeding cycle by 50% with GS provides an increase ≥100% in selection efficiency. With the rapid technological advances and declining costs of genotyping, our cautiously optimistic outlook is that GS has great potential to accelerate tree breeding. However, further simulation studies and proof-of-concept experiments of GS are needed before recommending it for operational implementation.


Genome-wide selection Effective population size Linkage disequilibrium Marker-assisted selection MAS 



This work was supported by the Brazilian Ministry of Science and Technology through FINEP grant 1755-01 (Genolyptus project), EMBRAPA Macroprogram grant, CNPq grant 577047/2008-6, and CNPq research productivity fellowships awarded to DG and MDVR. We thank the anonymous reviewers for their comments and suggestions on the manuscript.


  1. Abasht B, Sandford E, Arango J, Settar P, Fulton JE, O’Sullivan NP, Hassen A, Habier D, Fernando RL, Dekkers JCM, Lamont SJ (2009) Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations. BMC Genomics 10:S2PubMedCrossRefGoogle Scholar
  2. Amaral AJ, Megens HJ, Crooijmans RPMA, Heuven HCM, Groenen MAM (2008) Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179:569–579PubMedCrossRefGoogle Scholar
  3. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Publishing, Boca Raton, pp 145–162Google Scholar
  4. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  5. Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425CrossRefGoogle Scholar
  6. Bernardo R, Yu JM (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Sci 47:1082–1090CrossRefGoogle Scholar
  7. Brondani RP, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20PubMedCrossRefGoogle Scholar
  8. Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL Verification and candidate gene mapping. Genetics 164:1537–1546PubMedGoogle Scholar
  9. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  10. Calus MP, Meuwissen TH, de Roos AP, Veerkamp RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561PubMedCrossRefGoogle Scholar
  11. Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) Inbreeding in genome-wide selection. J Anim Breed Genet 124:369–376PubMedCrossRefGoogle Scholar
  12. Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3:e3395PubMedCrossRefGoogle Scholar
  13. de Roos AP, Hayes BJ, Goddard ME (2009) Reliability of genomic predictions across multiple populations. Genetics 183:545–553Google Scholar
  14. Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341PubMedCrossRefGoogle Scholar
  15. Dillen S, Storme V, Marron N, Bastien C, Neyrinck S, Steenackers M, Ceulemans R, Boerjan W (2008) Genomic regions involved in productivity of two interspecific poplar families in Europe. 1. Stem height, circumference and volume. Tree Genetics & Genomes 5:147–164CrossRefGoogle Scholar
  16. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Asssociation genetics of coastal douglas fir (Pseudotsuga menziesu var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182:1289–1302PubMedCrossRefGoogle Scholar
  17. Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009b) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5:225–234CrossRefGoogle Scholar
  18. Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257PubMedCrossRefGoogle Scholar
  19. Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391PubMedCrossRefGoogle Scholar
  20. Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175:399–409PubMedCrossRefGoogle Scholar
  21. Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26PubMedCrossRefGoogle Scholar
  22. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929PubMedCrossRefGoogle Scholar
  23. Grattapaglia D, Chaparro J, Wilcox P, Mccord S, Werner D, Amerson H, Mckeand S, Bridgwater F, Whetten R, O’malley D, Sederoff RR (1992) Mapping in woody plants with RAPD markers: applications to breeding in forestry and horticulture. Proceedings of the Symposium “Applications of RAPD Technology to Plant Breeding”. Crop Science Society of America, American Society of Horticultural Science, American Genetic Association, pp 37–40Google Scholar
  24. Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:148–156PubMedCrossRefGoogle Scholar
  25. Greenwood MS (1980) Method for inducing early flowering on young forest trees. In: Office USPaT (ed). Weyerhaeuser Company, TacomaGoogle Scholar
  26. Griffin AR, Whiteman P, Rudge T, Burgess IP, Moncur M (1993) Effect of Paclobutrazol on flower-bud production and vegetative growth in 2 species of eucalyptus. Can J For Res-Revue Canadienne De Recherche Forestiere 23:640–647CrossRefGoogle Scholar
  27. Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182:343–353PubMedCrossRefGoogle Scholar
  28. Hasan O, Reid JB (1995) Reduction of generation time in eucalyptus-globulus. Plant Growth Regul 17:53–60Google Scholar
  29. Hayes BJ, Goddard ME (2008) Technical note: prediction of breeding values using marker-derived relationship matrices. J Anim Sci 86:2089–2092PubMedCrossRefGoogle Scholar
  30. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443PubMedCrossRefGoogle Scholar
  31. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  32. Heifetz EM, Fulton JE, O’Sullivan N, Zhao H, Dekkers JCM, Soller M (2005) Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations. Genetics 171:1173–1181PubMedCrossRefGoogle Scholar
  33. Hill WG (1981) Estimation of effective population-size from data on linkage disequilibrium. Genet Res 38:209–216CrossRefGoogle Scholar
  34. Ibanz-Escriche N, Fernando RL, Toosi A, Dekkers JCM (2009) Genomic selection of purebreds for crossbred performance. Genet Sel Evol 41:12CrossRefGoogle Scholar
  35. Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics 180:329–340PubMedCrossRefGoogle Scholar
  36. Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177PubMedGoogle Scholar
  37. Kirst M, Myburg A, Sederoff R (2004) Genetic mapping in forest trees: markers, linkage analysis and genomics. Genet Eng (N Y) 26:105–141Google Scholar
  38. Kulheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics 10:452PubMedCrossRefGoogle Scholar
  39. Lee SH, van der Werf JHJ, Hayes BJ, Goddard ME, Visscher PM (2008) Predicting unobserved phenotypes for complex traits from whole-genome SNP Data. Plos Genetics 4Google Scholar
  40. Legarra A, Robert-Granie C, Manfredi E, Elsen JM (2008) Performance of genomic selection in mice. Genetics 180:611–618PubMedCrossRefGoogle Scholar
  41. Long N, Gianola D, Rosa GJM, Weigel KA, Avendano S (2007) Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet 124:377–389PubMedCrossRefGoogle Scholar
  42. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, SunderlandGoogle Scholar
  43. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Meth 7:111–118CrossRefGoogle Scholar
  44. Mayor PJ, Bernardo R (2009) Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F-2 populations. Crop Sci 49:1719–1725CrossRefGoogle Scholar
  45. McKeand SE, Bridgwater FE (1998) A strategy for the third breeding cycle of loblolly pine in the southeastern US. Silvae Genetica 47:223–234Google Scholar
  46. Megens HJ, Crooijmans RPMA, Bastiaansen JWM, Kerstens HHD, Coster A, Jalving R, Vereijken A, Silva P, Muir WM, Cheng HH, Hanotte O, Groenen MAM (2009) Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genetics 10:86PubMedCrossRefGoogle Scholar
  47. Meuwissen THE (2009) Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genet Sel Evol 41:35PubMedCrossRefGoogle Scholar
  48. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  49. Mrode RA (2005) Linear models for the prediction of animal breeding values. CABI, UKCrossRefGoogle Scholar
  50. Muir WM (2007) Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J Anim Breed Genet 124:342–355PubMedCrossRefGoogle Scholar
  51. Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus vitis. Plos One 5:e8219PubMedCrossRefGoogle Scholar
  52. Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer, New YorkGoogle Scholar
  53. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330PubMedCrossRefGoogle Scholar
  54. Nielsen HM, Sonesson AK, Yazdi H, Meuwissen THE (2009) Comparison of accuracy of genome-wide and BLUP breeding value estimates in sib based aquaculture breeding schemes. Aquaculture 289:259–264CrossRefGoogle Scholar
  55. Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312PubMedCrossRefGoogle Scholar
  56. Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890CrossRefGoogle Scholar
  57. Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21PubMedCrossRefGoogle Scholar
  58. Piyasatian N, Fernando RL, Dekkers JCM (2007) Genomic selection for marker-assisted improvement in line crosses. Theor Appl Genet 115:665–674PubMedCrossRefGoogle Scholar
  59. Rae A, Pinel M, Bastien C, Sabatti M, Street N, Tucker J, Dixon C, Marron N, Dillen S, Taylor G (2008) QTL for yield in bioenergy Populus: identifying G × E interactions from growth at three contrasting sites. Tree Genet Genomes 4:97–112CrossRefGoogle Scholar
  60. Raymond CA, Schimleck LR (2002) Development of near infrared reflectance analysis calibrations for estimating genetic parameters for cellulose content in Eucalyptus globulus. Can J For Res-Revue Canadienne De Recherche Forestiere 32:170–176CrossRefGoogle Scholar
  61. Resende MDV, de Assis TF (2008) Seleção recorrente recíproca entre populações sintéticas multi-espécies (SRR-PSME) de eucalipto. Pesqui Florestal Bras 57:57–60Google Scholar
  62. Resende MDV, Fernandes JSC (1999) Procedimento BLUP (melhor predição linear não viciada) individual para delineamentos experimentais aplicados ao melhoramento florestal. Revista de Matemática e Estatística (Biometric Brazilian Journal - in Portuguese) 17:89–107Google Scholar
  63. Resende MDV, Lopes PS, Silva RL, Pires IL (2008) Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesqui Florestal Bras 56:63–77Google Scholar
  64. Robinson AR, Mansfield SD (2009) Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J 58:706–714PubMedCrossRefGoogle Scholar
  65. Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high-density diversity arrays technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Meth 6:16CrossRefGoogle Scholar
  66. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223PubMedCrossRefGoogle Scholar
  67. Schimleck LR, Sussenbach E, Leaf G, Jones PD, Huang CL (2007) Microfibril angle prediction of Pinus taeda wood samples based on tangential face NIR spectra. IAWA J 28:1–12Google Scholar
  68. Sewell M, Neale D (2000) Mapping quantitative traits in forest trees. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol. 1 (Forestry Sciences, Vol 64). Kluwer Academic, The Netherlands, pp 407–423Google Scholar
  69. Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330PubMedGoogle Scholar
  70. Sillanpaa MJ, Corander J (2002) Model choice in gene mapping: what and why. Trends Genet 18:301–307PubMedCrossRefGoogle Scholar
  71. Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE (2008) Genomic selection using different marker types and densities. J Anim Sci 86:2447–2454PubMedCrossRefGoogle Scholar
  72. Sonesson AK, Meuwissen THE (2009) Testing strategies for genomic selection in aquaculture breeding programs. Genet Sel Evol 41:37PubMedCrossRefGoogle Scholar
  73. Strauss SH, Lande R, Namkoong G (1992) Limitations of molecular-marker-aided selection in forest tree breeding. Can J For Res-Revue Canadienne De Recherche Forestiere 22:1050–1061Google Scholar
  74. Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141PubMedCrossRefGoogle Scholar
  75. Toosi A, Fernando RL, Dekkers JC (2009) Genomic selection in admixed and crossbred populations. J Anim Sci 88:32–46PubMedCrossRefGoogle Scholar
  76. Tuskan G, West D, Bradshaw HD, Neale D, Sewell M, Wheeler N, Megraw B, Jech K, Wiselogel A, Evans R, Elam C, Davis M, Dinus R (1999) Two high-throughput techniques for determining wood properties as part of a molecular genetics analysis of hybrid poplar and loblolly pine. Appl Biochem Biotechnol 77–9:55–65CrossRefGoogle Scholar
  77. VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423PubMedCrossRefGoogle Scholar
  78. Visscher PM (2008) Sizing up human height variation. Nat Genet 40:489–490PubMedCrossRefGoogle Scholar
  79. White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, UKCrossRefGoogle Scholar
  80. Williams CG, Neale DB (1992) Conifer wood quality and marker-aided selection—a case-study. Can J For Res-Revue Canadienne De Recherche Forestiere 22:1009–1017Google Scholar
  81. Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824PubMedCrossRefGoogle Scholar
  82. Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Plant Genetics LaboratoryEMBRAPA-Genetic Resources and BiotechnologyBrasíliaBrazil
  2. 2.Graduate Program in Genomic Sciences and BiotechnologyUniversidade Catolica de BrasíliaBrasíliaBrazil
  3. 3.EMBRAPA Forestry, Estrada da RibeiraColomboBrazil
  4. 4.Department of Forest EngineeringUniversidade Federal de Viçosa-UFVViçosaBrazil

Personalised recommendations