Tree Genetics & Genomes

, Volume 7, Issue 1, pp 49–61 | Cite as

New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny

  • Yann FroelicherEmail author
  • Wafa Mouhaya
  • Jean-Baptiste Bassene
  • Gilles Costantino
  • Mourad Kamiri
  • Francois Luro
  • Raphael Morillon
  • Patrick Ollitrault
Original Paper


The aim of this work was to provide a set of mitochondrial markers to reveal polymorphism and to study the maternal phylogeny in citrus. We first used 44 universal markers previously described in the literature: nine of these markers produced amplification products but only one revealed polymorphism in citrus. We then designed six conserved pairs of primers using the complete mitochondrial DNA sequences of Arabidopsis thaliana and Beta vulgaris to amplify polymorphic intergenic and intronic regions. From these six pairs of primers, three from introns of genes coding for NADH dehydrogenase subunits 2, 5, and 7, revealed polymorphism in citrus. First, we confirmed that citrus have a maternal mitochondrial inheritance in two populations of 250 and 120 individuals. We then conducted a phylogenic study using four polymorphic primers on 77 genotypes representing the diversity of Citrus and two related genera. Seven mitotypes were identified. Six mitotypes (Poncirus, Fortunella, Citrus medica, Citrus micrantha, Citrus reticulata, and Citrus maxima) were congruent with previous taxonomic investigations. The seventh mitotype enabled us to distinguish an acidic mandarin group (‘Cleopatra’, ‘Sunki’ and ‘Shekwasha’) from other mandarins and revealed a maternal relationship with Citrus limonia (‘Rangpur’ lime, ‘Volkamer’ lemon) and Citrus jambhiri (‘Rough’ lemon). This mitotype contained only cultivated species used as rootstocks due to their good tolerances to abiotic stress. Our results also suggest that two species classified by Swingle and Reece, Citrus limon, and Citrus aurantifolia, have multiple maternal cytoplasmic origins.


Citrus Genetic diversity Mitochondria PCR marker Origin 



We thank the University of Agriculture, Faisalabad (Pakistan) and the University of Cukurova, Adana (Turkey) for providing “Galgal”, “Natsudaidai”, “Rangpur Nepal” and C. micrantha DNA, the “Comité Mixte Inter Universitaire Franco-Marocain” (Programme Volubils, MA/05/137 and MA/08/196) and the “Collectivité Territoriale de Corse” for the grant assigned to Wafa Mouhaya and to Jean-Baptiste Bassene, respectively. This study was funded by the “Collectivité Territoriale de Corse” (CTC), Interreg IIIA program.


  1. Abkenar AA, Isshiki S, Tashiro Y (2004) Phylogenetic relationships in the "true citrus fruit trees" revealed by PCR-RFLP analysis of cpDNA. Sci Hortic 102:233–242CrossRefGoogle Scholar
  2. Abkenar A, Isshiki S, Matsumoto R, Tashiro Y (2008) Comparative analysis of organelle DNAs in acid citrus grown in Japan using PCR-RFLP method. Genet Resour Crop Evol 55:487–492CrossRefGoogle Scholar
  3. Barkley N, Roose M, Krueger R, Federici C (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). TAG Theor Appl Genet 112:1519–1531CrossRefGoogle Scholar
  4. Barkley N, Krueger R, Federici C, Roose M (2009) What phylogeny and gene genealogy analyses reveal about homoplasy in citrus microsatellite alleles. Plant Syst Evol 282:71–86CrossRefGoogle Scholar
  5. Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives. Syst Bot 1:105–136CrossRefGoogle Scholar
  6. Bayer RJ, Mabberley DJ, Morton C, Miller CH, Sharma IK, Pfeil BE, Rich S, Hitchcock R, Sykes S (2009) A molecular phylogeny of the orange subfamily (Rutaceae: Aurantioideae) using nine cpDNA sequences. Am J Bot 96:668–685CrossRefGoogle Scholar
  7. Beidler JL, Hilliard PR, Rill LR (1982) Ultrasensitive staining of nucleic acids with silver. Anal Biochem 126:374–380CrossRefPubMedGoogle Scholar
  8. Botstein D, White R, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  9. Cheng Y, de Vicente MC, Meng H, Guo W, Tao N, Deng X (2005) A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiol 25:661–672PubMedGoogle Scholar
  10. Cho YR, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746CrossRefPubMedGoogle Scholar
  11. Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176CrossRefGoogle Scholar
  12. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131CrossRefPubMedGoogle Scholar
  13. Deng ZN, Gentile A, Nicolosi E, Continella G, Tribulato E (1996) Parentage determination of some citrus hybrids by molecular markers 2. Proceeding International Society of Citriculture, South Africa, pp 849–854Google Scholar
  14. Deng ZN, La Malfa S, Xie XM, Xiong XG, Gentile A (2007) Identification and evaluation of chloroplast uni- and trinucleotide sequence repeats in citrus. Sci Hortic 111:186–192CrossRefGoogle Scholar
  15. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  17. Duminil J, Pemonge MH, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430CrossRefGoogle Scholar
  18. Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6:393–397CrossRefPubMedGoogle Scholar
  19. Engelke T, Tatlioglu T (2004) The fertility restorer genes X and T alter the transcripts of a novel mitochondrial gene implicated in CMS1 in chives (Allium schoenoprasum L.). Mol Genet Genomics 271:150–160CrossRefPubMedGoogle Scholar
  20. Fang DQ, Krueger RR, Roose ML (1998) Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. J Am Soc Hortic Sci 123:612–617Google Scholar
  21. Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822CrossRefGoogle Scholar
  22. Freudenstein JV, Chase MW (2001) Analysis of mitochondrial nad1b-c intron sequences in Orchidaceae: utility and coding of length-change characters. Syst Bot 26:643–657Google Scholar
  23. Froelicher Y, Dambier D, Bassene JB, Costantino G, Lotfy S, Didout C, Beaumont V, Brottier P, Risterucci AM, Luro F, Ollitrault P (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecol Resour 8:119–122CrossRefGoogle Scholar
  24. Gmitter FG Jr, Hu X (1990) The possible role of Yunnan, China, in the origin of contemporary Citrus species (Rutaceae). Econ Bot 44:267–277CrossRefGoogle Scholar
  25. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481CrossRefPubMedGoogle Scholar
  26. Green RM, Vardi A, Galun E (1986) The plastome of Citrus. Physical map, variation among Citrus cultivars and species and comparison with related genera. Theor Appl Genet 72:170–177CrossRefGoogle Scholar
  27. Gulsen O, Roose ML (2001) Lemons: diversity and relationships with selected Citrus genotypes as measured with nuclear genome markers. J Am Soc Hortic Sci 126:309–317Google Scholar
  28. Herrero R, Asins MJ, Pina JA, Carbonell EA, Navarro L (1996) Genetic diversity in the orange subfamily Aurantioideae. II. Genetic relationships among genera and species. Theor Appl Gene 93:1327–1334CrossRefGoogle Scholar
  29. Hirai M, Kozaki I, Kajiura I (1986) Isozyme analysis and phylogenic relationship of Citrus. Japanese Journal of Breeding 36:377–389Google Scholar
  30. Hodgson RW (1967) Horticultural varieties of Citrus. In: Reuther W, Webber HJ, Batchelor LD (eds) The Citrus Industry. University of California, Riverside, pp 431–589Google Scholar
  31. Jena S, Kumar K, Nair N (2009) Molecular phylogeny in Indian Citrus L. (Rutaceae) inferred through PCR-RFLP and trnL-trnF sequence data of chloroplast DNA. Sci Hortic 119:403–416CrossRefGoogle Scholar
  32. Laroche J, Li P, Maggia L, Bousquet J (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA 94:5722–5727CrossRefPubMedGoogle Scholar
  33. Liu Q, Scaringe WA, Sommer SS (2000) Discrete mobility of single-stranded DNA in non-denaturing gel electrophoresis. Nucl Acids Res 28:940–943CrossRefPubMedGoogle Scholar
  34. Lotfy S, Luro F, Carreel F, Froelicher Y, Rist D, Ollitrault P (2003) Application of cleaved amplified polymorphic sequence method for analysis of cytoplasmic genome among Aurantioideae intergeneric somatic hybrids. J Am Soc Hortic Sci 128:225–230Google Scholar
  35. Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287CrossRefPubMedGoogle Scholar
  36. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19CrossRefPubMedGoogle Scholar
  37. Moreira CD, Gmitter FG Jr, Grosser JW, Huang S, Ortega VM, Chase CD (2002) Inheritance of organelle DNA sequences in a Citrus-Poncirus intergeneric cross. J Hered 93:174–178CrossRefPubMedGoogle Scholar
  38. Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43CrossRefPubMedGoogle Scholar
  39. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166CrossRefGoogle Scholar
  40. Nicolosi E, Sl M, El-Otmani M, Negbi M, Goldschmidt EE (2005) The search for the authentic citron (Citrus medica L.): historic and genetic analysis. HortScience 40:1963–1968Google Scholar
  41. Ollitrault P, Jacquemond C, Dubois C, Luro F (2003) Citrus. In: Hamon P, Seguin M, Perrier X, Glaszmann J (eds) Genetic diversity of cultivated tropical plants. Science Publishers and Cirad, Paris, pp 193–217Google Scholar
  42. Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns, and highly variable mutation rates. Proc Natl Acad Sci 97:6960–6966Google Scholar
  43. Perrier X, Jacquemoud-Collet JP (2006) DARwin software. In:
  44. Pang X-M, Hu C-G, Deng X-X (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet Resour Crop Evol 54:429–436CrossRefGoogle Scholar
  45. Saitou N, Nei M (1987) The neighbor-joining method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  46. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540CrossRefPubMedGoogle Scholar
  47. Scora RW (1975) On the history and origin of citrus. Bull Torrey Bot Club 102:369–375CrossRefGoogle Scholar
  48. Scora RW (1988) Biochemistry, taxonomy and evolution of modern cultivated citrus. Proc Int Soc Citricult 1:277–289Google Scholar
  49. Scora RW, Kumamoto J, Esen A, Stone BC (1976) A phytochemical investigation of Citrus halimii. Biochem Syst Ecol 4:255–258CrossRefGoogle Scholar
  50. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kans Sci Bull 38:1409–1438Google Scholar
  51. Swingle WT, Reece PC (1967) The botany of Citrus and its wild relatives. In: BL D (ed) Reuther W, Webber HJ. The Citrus Industry, University of California, Riverside, USA, pp 190–430Google Scholar
  52. Tanaka T (1954) Species problem in Citrus. Japanese Society for the Promotion of Science, Tokyo, pp 1–152Google Scholar
  53. Tanaka T (1977) Fundamental discussion of Citrus classification. Stud Citrologia 14:1–6Google Scholar
  54. Torres AM, Soost RK, Diedenhofen U (1978) Leaf isozymes as genetic markers in Citrus. Am J Bot 65:869–881CrossRefGoogle Scholar
  55. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058CrossRefPubMedGoogle Scholar
  56. Yamamoto M, Kobayashi S (1996) Polymorphism of chloroplast DNA in Citrus. J Japan Soc Hort Sci 65:291–296CrossRefGoogle Scholar
  57. Yamamoto M, Kobayashi S, Nakamura Y, Yamada Y (1993) Phylogenic relationships of citrus revealed by RFLP analysis of mitochondrial and chloroplast DNA. Jap J Breed 43:355–365Google Scholar
  58. Yingzhi L, Yunjiang C, Nengguo T, Xiuxin D (2007) Phylogenetic analysis of mandarin land races, wild mandarins, and related species in China using nuclear LEAFY second intron and plastid trnL-trnF sequence. J Am Soc Hort Sci 132:796–806Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yann Froelicher
    • 1
    Email author
  • Wafa Mouhaya
    • 1
  • Jean-Baptiste Bassene
    • 1
  • Gilles Costantino
    • 2
  • Mourad Kamiri
    • 1
  • Francois Luro
    • 2
  • Raphael Morillon
    • 3
  • Patrick Ollitrault
    • 3
  1. 1.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)Unité Propre de Recherche «Amélioration génétique d’espèces à multiplication végétative»San GiulianoFrance
  2. 2.Institut National de la Recherche Agronomique (INRA)Unité de Recherche «Génétique et Ecophysiologie de la Qualité des Agrumes»San GiulianoFrance
  3. 3.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)Unité Propre de Recherche «Amélioration génétique d’espèces à multiplication végétative»MontpellierFrance

Personalised recommendations