Tree Genetics & Genomes

, Volume 6, Issue 3, pp 477–487 | Cite as

Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection

  • Vincent G. M. Bus
  • Heather C. M. Bassett
  • Deepa Bowatte
  • David Chagné
  • Chandra A. Ranatunga
  • Dulantha Ulluwishewa
  • Claudia Wiedow
  • Susan E. Gardiner
Original Paper

Abstract

Apple is host to a wide range of pests and diseases, with several of these, such as apple scab, powdery mildew and woolly apple aphid, being major causes of damage in most areas around the world. Resistance breeding is an effective way of controlling pests and diseases, provided that the resistance is durable. As the gene pyramiding strategy for increasing durability requires a sufficient supply of resistance genes with different modes of action, the identification and mapping of new resistance genes is an ongoing process in breeding. In this paper, we describe the mapping of an apple scab, a powdery mildew and a woolly apple aphid gene from progeny of open-pollinated mildew immune selection. The scab resistance gene Rvi16 was identified in progeny 93.051 G07-098 and mapped to linkage group 3 of apple. The mildew and woolly aphid genes were identified in accession 93.051 G02-054. The woolly aphid resistance gene Er4 mapped to linkage group 7 to a region close to where previously the genes Sd1 and Sd2, for resistance to the rosy apple leaf-curling aphid, had been mapped. The mildew resistance gene Pl-m mapped to the same region on linkage group 11 where Pl2 had been mapped previously. Flanking markers useful for marker-assisted selection have been identified for each gene.

Keywords

Genetic marker Resistance gene Malus Apple scab Powdery mildew Woolly apple aphid 

References

  1. Aderhold R (1902) Ein Beitrag zur Frage der Empfänglichkeit der Apfelsorten für Fusicladium dendriticum (Wallr.) Fuck. und derem Beziehungen zum Wetter. Arbeiten Biol Abt für Land- und Forstwirtschaft 2:560–566Google Scholar
  2. Alspach PA, Bus VGM (1999) Spatial variation of woolly apple aphid (Eriosoma lanigerum, Hausmann) in a genetically diverse apple planting. NZ J Ecol 23(1):39–44Google Scholar
  3. Alston FH (1977) Practical aspects of breeding for mildew (Podospaera leucotricha) resistance in apples. Proc Eucarpia Fruit Section Symp VII, Top Fruit Breeding, Wageningen, 1976 pp 4–13Google Scholar
  4. Alston FH, Briggs JB (1968) Resistance to Sappaphis devecta (Wlk) in apple. Euphytica 17:468–472CrossRefGoogle Scholar
  5. Alston FH, Briggs JB (1977) Resistance genes in apples and biotypes of Dysaphis devecta. Ann appl Biol 87:75–81CrossRefGoogle Scholar
  6. Austin P, Norling C, Volz R, Bus V, Gardiner S (2006) Using controlled environments to accelerate flowering of Malus seedlings. Third Rosaceae Genomics Conference, Napier, New Zealand, 19–22 March 2006Google Scholar
  7. Bradley SJ, Murrell VC, Shaw PW, Walker JTS (1997) Effect of orchard pesticides on Aphelinus mali, the woolly apple aphid parasitoid. Proc 50th NZ Plant Protection Conf, pp 218–222Google Scholar
  8. Bruzzese E, Hasan S (1983) A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathol 32:335–338CrossRefGoogle Scholar
  9. Bus V, Bradley S, Hofstee M, Alspach P, Brewer L, Luby J (2000a) Increasing genetic diversity in apple breeding to improve the durability of pest and disease resistance. Acta Hort 538:185–190Google Scholar
  10. Bus V, Plummer K, Rikkerink E, Luby J (2000b) Evaluation of the pathogenicity of two scab isolates derived from the Vf-resistant apple cultivar ‘Baujade’. IOBC WPRS Bull 23(12):231–237Google Scholar
  11. Bus V, Rikkerink E, Aldwinckle HS, Caffier V, Durel C-E, Gardiner S, Gessler C, Groenwold R, Laurens F, Le Cam B, Luby J, Meulenbroek B, Kellerhals M, Parisi L, Patocchi A, Plummer K, Schouten HJ, Tartarini S, Van de Weg E (2009) A proposal for the nomenclature of Venturia inaequalis races. Acta Hort 814:739–746Google Scholar
  12. Bus VGM (2006a) Differential host-pathogen interactions of Venturia inaequalis and Malus. Unpublished thesis. University of Auckland, AucklandGoogle Scholar
  13. Bus VGM (2006b) Gene-for-gene relationships and durable resistance to apple scab. In: Mercer CF (ed) Proc 13th Australasian Plant Breeding Conf, Breeding for Success: diversity in action, Christchurch, pp 1159–1169Google Scholar
  14. Bus VGM, Alspach PA, Hofstee ME, Brewer LR (2002) Genetic variability and preliminary heritability estimates of resistance to scab (Venturia inaequalis) in an apple genetics population. NZ J Crop Hort Sci 30:83–92Google Scholar
  15. Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005a) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049CrossRefPubMedGoogle Scholar
  16. Bus VGM, Rikkerink EHA, Van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens F, Meulenbroek EJ, Plummer K (2005b) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Molec Breed 15:103–116CrossRefGoogle Scholar
  17. Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton J-M, Durel C-E, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly aphid (Eriosoma lanigerum Hausm.). Tree Genet Genomes 4:223–236CrossRefGoogle Scholar
  18. Caffier V, Laurens F (2005) Breakdown of Pl2, a major gene of resistance to apple powdery mildew, in a French experimental orchard. Plant Pathol 54:116–124CrossRefGoogle Scholar
  19. Caffier V, Parisi L (2007) Development of apple powdery mildew on sources of resistance to Podosphaera leucotricha, exposed to an inoculum virulent against resistance gene Pl-2. Plant Breed 126:319–322CrossRefGoogle Scholar
  20. Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Molec Breed 17:329–339CrossRefGoogle Scholar
  21. Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset MN, Paulin JP, Durel CE (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135CrossRefPubMedGoogle Scholar
  22. Celton J-M, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107CrossRefGoogle Scholar
  23. Cevik V, King GJ (2002a) High-resolution genetic analysis of the Sd-1 aphid resistance locus in Malus spp. Theor Appl Genet 105:346–354CrossRefPubMedGoogle Scholar
  24. Cevik V, King GJ (2002b) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945CrossRefPubMedGoogle Scholar
  25. Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Phytopathology 40:249–256Google Scholar
  26. Crane MB (1937) Breeding immune rootsocks. Ann appl Biol 24:188–195Google Scholar
  27. Crosby JA, Janick J, Pecknold PC, Korban SS, O'Connor PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945-1990. Fruit Var J 46:145–166Google Scholar
  28. Cunningham JL (1972) A miracle mounting fluid for permanent whole-mounts of microfungi. Mycologia 64:906–911CrossRefGoogle Scholar
  29. Dayton DF (1977) Genetic immunity to apple mildew incited by Podosphaera leucotricha. HortScience 12:225–226Google Scholar
  30. Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234CrossRefPubMedGoogle Scholar
  31. Durel CE, Calenge F, Parisi L, van de Weg WE, Kodde LP, Liebhard R, Gessler C, Thiermann M, Dunemann F, Gennari F, Tartarini S, Lespinasse Y (2004) An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic mapsof five apple progenies. Acta Hort 663:135–140Google Scholar
  32. Fernández-Fernández F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Molec Ecol Notes 6:1039–1041CrossRefGoogle Scholar
  33. Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet 93:485–493CrossRefGoogle Scholar
  34. Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hort 622:141–151Google Scholar
  35. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4, Fruits and Nuts. Springer, Heidelberg, pp 1–62Google Scholar
  36. Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Critical Rev Plant Sci 25:473–503CrossRefGoogle Scholar
  37. Giliomee JH, Strydom DK, van Zyl HJ (1968) Northern Spy, Merton and Malling-Merton rootstocks susceptible to woolly aphid, Eriosoma lanigerum, in the Western Cape. Sth Afr J Agric Sci 11:183–186Google Scholar
  38. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  39. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709CrossRefPubMedGoogle Scholar
  40. Hatton RG (1937) Introduction to the workshop “The problems raised by the woolly aphis of the apple—a case for team research”. Ann appl Biol 24:169–173CrossRefGoogle Scholar
  41. Khan MA, Durel C-E, Duffy B, Drouet D, Kellerhals M, Gessler C, Patocchi A (2007) Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50:568–577CrossRefPubMedGoogle Scholar
  42. King GJ, Alston FH, Brown LM, Chevreau E, Evans KM, Dunemann F, Janse J, Laurens F, Lynn JR, Maliepaard C, Manganaris AG, Roche P, Schmidt H, Tartarini S, Verhaegh J, Vrielink R (1998) Multiple field and glasshouse assessments increase the reliability of linkage mapping of the Vf source of scab rsistance in apple. Theor Appl Genet 96:699–708CrossRefGoogle Scholar
  43. Korban SS, Dayton DF (1983) Evaluation of Malus germplasm for resistance to powdery mildew. HortScience 18:219–222Google Scholar
  44. Laurens F (1999) Review of the current apple breeding programmes in the world: objectives for scion cultivar improvement. Acta Hort 484:163–170Google Scholar
  45. Lespinasse Y (1983) Amélioration du pommier pour la résistance a l'oidium (Podosphaera leucotricha). Premiers résultats concernant la virulence du champignon. IOBC WPRS Bull 6(4):96–110Google Scholar
  46. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg WE, Gessler C (2002) Development and characterisation of 140 new microsattellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  47. Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ x ‘Discovery’ progeny. Phytopathology 93:493–501CrossRefPubMedGoogle Scholar
  48. Luby JJ, Alspach PA, Bus VGM, Oraguzie NC (2002) Field resistance to fire blight in a diverse apple (Malus sp.) germplasm collection. J Am Soc Hort Sci 127:245–253Google Scholar
  49. Noiton D, Shelbourne CJA (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219Google Scholar
  50. Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to Vf gene. Phytopathology 83:533–537CrossRefGoogle Scholar
  51. Peil A, Garcia T, Richter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3 detected by rapid genome scanning. Plant Breed 126:470–475CrossRefGoogle Scholar
  52. Peil A, Hanke M-V, Flachowsky H, Richter K, Garcia-Libreros T, Celton J-M, Gardiner S, Horner M, Bus V (2008) Confirmation of the fire blight QTL of Malus x robusta 5 on linkage group 3. Acta Hort 793:297–303Google Scholar
  53. Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sanasavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) map. Tree Genet Genomes 3:311–317CrossRefGoogle Scholar
  54. Rock GC, Zeiger DC (1974) Woolly apple aphid infests Malling and Malling-Merton rootstocks in propagation beds in North Carolina. J Econ Entomol 67:137–138Google Scholar
  55. Sandanayaka WRM, Bus VGM, Connolly P, Newcomb R (2003) Characteristics associated with woolly apple aphid, Eriosoma lanigerum, resistance of three apple rootstocks. Entomol Exp Appl 109:63–72CrossRefGoogle Scholar
  56. Seglias NP, Gessler C (1997) Genetics of apple powdery mildew resistance from Malus zumi (Pl2). IOBC WPRS Bull 20(9):195–208Google Scholar
  57. Sen Gupta GC, Miles PW (1975) Studies on the susceptibility of varieties of apple to the feeding of two strains of woolly aphis (Homoptera) in relation to the chemical content of the tissues of the host. Aus J Agr Res 26:157–168CrossRefGoogle Scholar
  58. Shaw PW, Walker JTS (1996) Biological control of woolly apple aphid by Aphelinus mali in an integrated fruit production programme in Nelson. Proc 49th NZ Plant Protection Conf, pp 59–63Google Scholar
  59. Shay JR, Williams EB (1956) Identification of three physiologic races of Venturia inaequalis. Phytopathology 46:190–193Google Scholar
  60. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224CrossRefGoogle Scholar
  61. Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel C-E (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657–667CrossRefPubMedGoogle Scholar
  62. Volz R, Rikkerink E, Austin P, Lawrence T, De Silva N, Bus V (2009) “Fast-breeding” in apple: a strategy to accelerate introgression of new traits into elite germplasm. Acta Hort 814:163–168Google Scholar
  63. Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1989) Apples (Malus). Acta Hort 290:1–62Google Scholar
  64. Williams EB, Kuć J (1969) Resistance in Malus to Venturia inaequalis. Ann Rev Phytopathol 7:223–246CrossRefGoogle Scholar
  65. Win J, Greenwood DR, Plummer KM (2003) Characterisation of a protein from Venturia inaequalis that induces necrosis in Malus carrying the Vm resistance gene. Physiol Molec Plant Pathol 62:193–202CrossRefGoogle Scholar
  66. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18PubMedGoogle Scholar
  67. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, Van de Weg WE, Hayashii T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Hort 663:51–56Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vincent G. M. Bus
    • 1
  • Heather C. M. Bassett
    • 2
  • Deepa Bowatte
    • 2
  • David Chagné
    • 2
  • Chandra A. Ranatunga
    • 1
  • Dulantha Ulluwishewa
    • 2
  • Claudia Wiedow
    • 2
  • Susan E. Gardiner
    • 2
  1. 1.The New Zealand Institute for Plant and Food Research LimitedHavelock NorthNew Zealand
  2. 2.The New Zealand Institute for Plant and Food Research LimitedPalmerston NorthNew Zealand

Personalised recommendations