Advertisement

Tree Genetics & Genomes

, Volume 6, Issue 2, pp 247–258 | Cite as

Characterisation and inheritance of nuclear microsatellite loci for use in population studies of the allotetraploid Salix albaSalix fragilis complex

  • Robert Andrew King
  • Sarah L. Harris
  • Angela Karp
  • Jacqueline H. A. BarkerEmail author
Original Paper

Abstract

We present nine polymorphic di- and tri-nucleotide repeat nuclear microsatellite markers selected specifically for their use in high throughput studies concerning the dioecious allotetraploid Salix albaSalix fragilis willow complex. These taxa and their hybrids are difficult to discriminate using morphological characters. Thus, multiplex reactions were developed for these microsatellite loci and their effectiveness to distinguish individuals, especially hybrids, and their inheritance patterns in controlled crosses were determined. All loci displayed disomic–monogenic inheritance which allowed for the genotype data to be analysed as for a diploid organism. The nine loci produced a total of 67 alleles (mean, 7.4 alleles per locus; range, 3–11 alleles) in a reference panel of 57 individuals from two germplasm collections and natural populations. Gene diversity values (as measured by the expected heterozygosity) ranged from 0.000–0.820. A total of 53 distinct multilocus genotypes were observed, and ordination analysis revealed three separate clusters corresponding to S. alba, S. fragilis and hybrids. The microsatellite loci described here will be used in population genetic studies to investigate genetic variation, gene flow, levels of hybridisation and the extent of introgression in natural populations of the S. albaS. fragilis complex. They are also useful for clonal identification, conservation and sustainable management of germplasm collections, genetic mapping and the selection of individuals and/or certification of controlled crosses for breeding programmes.

Keywords

Allotetraploid Genetic diversity Microsatellite Hybrid Salix alba Salix fragilis 

Notes

Acknowledgements

This research was funded by the European Commission Framework V Programme (contract no. QLK3-CT-2000-30227). The authors wish to thank Steve Hanley and Kevin Lindegaard for help with marker development and controlled crosses, respectively, and Karolein van Puyvelde and Ludwig Triest at Vrije Universiteit Brussel for collection and DNA extraction of material from the INBO collection. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council, UK.

References

  1. Abbott RJ, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biol J Linn Soc 82:467–474CrossRefGoogle Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedGoogle Scholar
  3. Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL (2003) High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet 107:1201–1207CrossRefPubMedGoogle Scholar
  4. Barcaccia G, Meneghetti S, Albertini E, Triest L, Lucchin M (2003) Linkage mapping in tetraploid willows: segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba x Salix fragilis interspecific hybrids. Heredity 90:169–180CrossRefPubMedGoogle Scholar
  5. Barker JHA, Matthes M, Arnold GM, Edwards KJ, Ahman I, Larsson S, Karp A (1999) Characterisation of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42:173–183CrossRefPubMedGoogle Scholar
  6. Barker JHA, Pahlich A, Trybush S, Edwards KJ, Karp A (2003) Microsatellite markers for diverse Salix species. Mol Ecol Notes 3:4–6CrossRefGoogle Scholar
  7. Becher SA, Steinmetz K, Weising K, Boury S, Peltier D, Renou JP, Kahl G, Wolff K (2000) Microsatellites for cultivar identification in Pelargonium. Theor Appl Genet 101:643–651CrossRefGoogle Scholar
  8. Beismann H (1998) Wuchsform, funktionelle Holzanatomie und Biomechanik im Zusammenhang mit der Standortsökologie bei Salix fragilis, Salix alba und der Hybridart Salix x rubens. PhD Thesis, University of Freiburg, GermanyGoogle Scholar
  9. Beismann H, Barker JHA, Karp A, Speck T (1997) AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol 6:989–993CrossRefGoogle Scholar
  10. Boecklen WJ, Howard DJ (1997) Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78:2611–2616Google Scholar
  11. Brennan AC, Bridle JR, Wang A-L, Hiscock SJ, Abbott RJ (2009) Adaption and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717CrossRefPubMedGoogle Scholar
  12. Burgarella C, Lorenzo Z, Jabbour-Zahab R, Lumaret R, Guichoux E, Petit RJ, Soto Á, Gil L (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102:442–452CrossRefPubMedGoogle Scholar
  13. Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52CrossRefPubMedGoogle Scholar
  14. Cavender-Bares J, Pahlich A (2009) Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Am J Bot 96:1690–1702CrossRefGoogle Scholar
  15. Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809PubMedGoogle Scholar
  16. Chavarriaga-Aguirre P, Maya MM, Bonierbale MW, Kresovich S, Fregene MA, Tohme J, Kochert G (1998) Microsatellites in cassava (Manihot esculenta Crantz): discovery, inheritance and variability. Theor Appl Genet 97:493–501CrossRefGoogle Scholar
  17. Cronn RC, Small RL, Wendel JF (1999) Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci USA 96:14406–14411CrossRefPubMedGoogle Scholar
  18. de Cock K, Lybeer B, Vander Mijnsbrugge K, Zwaenepoel A, Van Peteghem P, Quataert P, Breyne P, Goetghebeur P, Van Slycken J (2003) Diversity of the willow complex Salix albaS x rubensS. fragilis. Silvae Genet 52:148–153Google Scholar
  19. Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760PubMedGoogle Scholar
  20. Esselink GD, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele countingpeak ratios) method. Theor Appl Genet 109:402–408CrossRefPubMedGoogle Scholar
  21. Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map of the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716PubMedGoogle Scholar
  22. Han FP, Fedak G, Ouellet T, Liu B (2003) Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46:716–723CrossRefPubMedGoogle Scholar
  23. Hanley S (2003) Genetic mapping of important agronomic traits in biomass willow. PhD Thesis. University of Bristol, UKGoogle Scholar
  24. Hanley S, Barker JHA, Van Ooijen JW, Aldam C, Harris SL, Ahman I, Larsson S, Karp A (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105:1087–1096CrossRefPubMedGoogle Scholar
  25. Hanley S, Mallott MD, Karp A (2006) Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet Genomes 3:35–48CrossRefGoogle Scholar
  26. Hartl DL (1974) Genetic dissection of segregation distortion. I. Suicide combinations of Sd genes. Genetics 76:477–486PubMedGoogle Scholar
  27. Hoban SM, McCleary TS, Schlarbaum SE, Romero-Severson J (2009) Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biol Lett 5:324–327CrossRefPubMedGoogle Scholar
  28. King RA, Gornall RJ, Preston CD, Croft JM (2002) Population differentiation of Potamogeton pectinatus in the Baltic Sea with reference to waterfowl dispersal. Mol Ecol 11:1947–1956CrossRefPubMedGoogle Scholar
  29. Krutovsky KV, St Clair JB, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. Menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658CrossRefGoogle Scholar
  30. Lautenschlager E (1993) Zur Unterscheidung von Salix fragilis von ihrem Bastard Salix x rubens. Bauhinia 11:35–36Google Scholar
  31. Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476CrossRefGoogle Scholar
  32. Lian C, Oishi R, Miyashita N, Nara K, Nakaya H, Wu B, Zhou Z, Hogetsu T (2003) Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12:609–618CrossRefPubMedGoogle Scholar
  33. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628CrossRefPubMedGoogle Scholar
  34. Masterson J (1994) Stomatal size in fossil plants—evidence for polyploidy in majority of angiosperms. Science 264:421–424CrossRefPubMedGoogle Scholar
  35. Meikle RD (1984) Willows and poplars of Great Britain and Ireland. BSBI Handbook No. 4. Botanical Society of the British Isles, LondonGoogle Scholar
  36. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRefPubMedGoogle Scholar
  37. Olsen MS (1997) Bayesian procedures for discriminating among hypotheses with discrete distributions: inheritance in the tetraploids Astilbe biternata. Genetics 147:1933–1942Google Scholar
  38. Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747CrossRefPubMedGoogle Scholar
  39. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  40. Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides (Nutt.) Engelm. Mol Ecol 4:135–147CrossRefGoogle Scholar
  41. Rieseberg LH (1996) Homology among RAPD fragments in interspecific comparisons. Mol Ecol 5:99–105CrossRefGoogle Scholar
  42. Saal B, Plieske J, Hu J, Quiros CF, Struss D (2001) Microsatellite markers for genome analysis in Brassica. II. Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea L. Theor Appl Genet 102:695–699CrossRefGoogle Scholar
  43. Schenk MF, Thienpont C-N, Koopman WJM, Gilissen LJWJ, Smulders MJM (2008) Phylogenetic relationships in Betula (Betulaceae) based on AFLP markers. Tree Genet Genomes 4:911–924CrossRefGoogle Scholar
  44. Smulders MJM, Beringen R, Volosyanchuk R, Vanden Broeck A, van der Schoot J, Arens P, Vosman B (2008) Natural hybridisation between Populus nigra L. and P. x canadensis Moench. Hybrid offspring competes for niches along the Rhine river in the Netherlands. Tree Genet Genomes 4:663–675CrossRefGoogle Scholar
  45. Soltis DE, Soltis PS (1989) Tetrasomic inheritance in Heuchera micrantha (Saxifragaceae). J Heredity 80:123–126Google Scholar
  46. Soltis DE, Soltis PS (1990) Isozymes in plant biology. Chapman & Hall, LondonGoogle Scholar
  47. Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352CrossRefGoogle Scholar
  48. Tereba A (1999) Tools for analysis of population statistics. Profiles DNA 2:14–16Google Scholar
  49. Triest L, De Greef B, D’Haeseleer M, Echchgadda G, van Slycken J, Coart E (1998) Variation and inheritance of isozyme loci in controlled crosses of Salix alba and Salix fragilis. Silvae Genet 47:88–94Google Scholar
  50. Triest L, De Greef B, Vermeersch S, Van Slycken J, Coart E (1999) Genetic variation and putative hybridization in Salix alba and S. fragilis (Salicaceae): evidence from allozyme data. Plant Syst Evol 215:169–187CrossRefGoogle Scholar
  51. Triest L, De Greef B, De Bondt R, Van Slycken J (2000) RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix albaSalix fragilis complex. Heredity 84:555–563CrossRefPubMedGoogle Scholar
  52. Trybush S, Jahodova S, Macalpine W, Karp A (2008) A genetic study of a Salix germplasm resource reveals new insights into relationships among subgenera, sections and species. BioEnergy Res 1:67–79CrossRefGoogle Scholar
  53. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151CrossRefPubMedGoogle Scholar
  54. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  55. Warnke SE, Douches DS, Branham BE (1998) Isozyme analysis supports allotetraploid inheritance in tetraploid creeping bentgrass (Agrostis palustris Huds.). Crop Sci 38:801–805CrossRefGoogle Scholar
  56. Wilkinson J (1941) The cytology of the cricket bat willow (Salix alba var. caerulea). Ann Bot 5:149–165Google Scholar
  57. Williams JKG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535CrossRefPubMedGoogle Scholar
  58. Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463CrossRefPubMedGoogle Scholar
  59. Zeng L, Meredith WR Jr, Gutierrez OA, Boykin DL (2009) Identification of associations between SSR markers and fiber traits in an exotic germplasm derived from multiple crosses among Gossypium tetraploid species. Theor Appl Genet 119:93–103CrossRefPubMedGoogle Scholar
  60. Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH (2004) Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China Ser C 47:553–561CrossRefGoogle Scholar
  61. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeats (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Robert Andrew King
    • 1
    • 3
  • Sarah L. Harris
    • 1
    • 4
  • Angela Karp
    • 1
  • Jacqueline H. A. Barker
    • 2
    Email author
  1. 1.Plant and Invertebrate Ecology DepartmentRothamsted ResearchHarpendenUK
  2. 2.Plant Sciences DepartmentRothamsted ResearchHarpendenUK
  3. 3.Cardiff School of Biosciences, Biomedical Sciences BuildingCardiff UniversityCardiffUK
  4. 4.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations