Tree Genetics & Genomes

, Volume 6, Issue 1, pp 137–148 | Cite as

Cytogenetic characterization of Hydrangea involucrata Sieb. and H. aspera D. Don complex (Hydrangeaceae): genetic, evolutional, and taxonomic implications

  • Eric Mortreau
  • Sonia Siljak-Yakovlev
  • Malika Cerbah
  • Spencer C. Brown
  • Hélène Bertrand
  • Claudie Lambert
Original Paper

Abstract

The subsection Asperae of genus Hydrangea L. (Hydrangeaceae) has been investigated for three reasons: several ambiguous classifications concerning Hydrangea aspera have been published, unexpected differences in genome size among seven accessions have been reported Cerbah et al. (Theor Appl Genet 103:45–51, 2001), and two atypical chromosome numbers (2n = 30 for Hydrangea involucrata and 2n = 34 for H. aspera) have been found when all other species of the genus present 2n = 36. Therefore, these two species and four subspecies of Hydrangea in all 29 accessions were analyzed for their genome size, chromosome number, and karyotype features. This investigation includes flow cytometric measurements of nuclear DNA content and bases composition (GC%), fluorochrome banding for detection of GC- and AT-rich DNA regions, and fluorescent in situ hybridisation (FISH) for chromosome mapping of 5 S and 18 S-5.8 S-26 S rDNA genes. In the H. aspera complex, the genome size ranged from 2.98 (subsp. sargentiana) to 4.67 pg/2C (subsp. aspera), an exceptional intraspecific variation of 1.57-fold. The mean base composition was 40.5% GC. Our report establishes the first karyotype for the species H. involucrata, and for the subspecies of H. aspera which indeed present different formulae, offering an element of discrimination. FISH and fluorochrome banding revealed the important differentiation between these two species (H. involucrata and H. aspera) and among four subspecies of the H. aspera complex. Our results are in agreement with the Chinese classification that places the groups Kawakami and Villosa as two different species: Hydrangea villosa Rehder and Hydrangea kawakami Hayata. This knowledge can contribute to effective germplasm management and horticultural use.

Keywords

Genetic resources Hydrangea DNA content Base composition Karyotype features Fluorochrome banding FISH B chromosomes 

References

  1. Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in Angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909CrossRefGoogle Scholar
  2. Camacho JPM, Sharbel TF, Beukeboom LW (2000) B chromosome evolution. Philos Trans R Soc Lond, B 355:163–178CrossRefGoogle Scholar
  3. Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5 S and 18 S–25 S rDNA and repetitive DNA sequences in Aegilops umbellata. Genome 38:91–96PubMedGoogle Scholar
  4. Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J Heredity 89:312–318CrossRefGoogle Scholar
  5. Cerbah M, Mortreau E, Brown SC, Siljak-Yakovlev S, Bertrand H, Lambert C (2001) Genome size variation relationships in the genus Hydrangea. Theor Appl Genet 103:45–51CrossRefGoogle Scholar
  6. Chiche J, Brown SC, Leclerc JC, Siljak-Yakovlev S (2003) Genome size, heterochromatin organisation, and ribosomal gene mapping in four species of Ribes. Can J Bot 81:1049–1057CrossRefGoogle Scholar
  7. Chun WY (1954) A census and preliminary study of the Chinese Hydrangeoideae. Acta Phytotaxonomica Sinica 2:10–203Google Scholar
  8. Cuéllar T, Orellana J, Belhassen E, Bella JL (1999) Chromosomal characterization and physical mapping of the 5 S and the 18 S–5.8 S–25 S ribosomal DNA in Helianthus argophyllus, with new data from Helianthus annuus. Genome 42:110–115CrossRefGoogle Scholar
  9. Danna KJ, Workman R, Coryell V, Keim P (1996) 5 S rRNA genes in tribe Phaseoleae: array size, number, and dynamics. Genome 39:445–455CrossRefPubMedGoogle Scholar
  10. De Melo NF, Guerra M (2003) Variability of the 5 S and 45 S rDNA Sites in Passiflora L. Species with distinct base chromosome numbers. Ann Bot 92:309–316CrossRefPubMedGoogle Scholar
  11. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells. Weinheim, Wiley-VCH VerlagCrossRefGoogle Scholar
  12. Funamoto T, Tanaka R (1988) Karyomorphological studies in some taxa of Hydrangea from Japan. Kromosomo 49:1583–1594Google Scholar
  13. Furuta Y, Nishikawa K (1991) Variation in nuclear and individual chromosomal DNA contents and its role in evolution of plant. In: Gupta PK, Tsuchyia T (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, New-York, pp 71–85Google Scholar
  14. Geber G, Schweizer D (1987) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158:97–106CrossRefGoogle Scholar
  15. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5 S rRNA genes. Nucleic Acids Res 8:4851–4865CrossRefPubMedGoogle Scholar
  16. Godelle B, Cartier D, Marie D, Brown CS, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626CrossRefPubMedGoogle Scholar
  17. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041Google Scholar
  18. Hamon P, Siljak-Yakovlev S, Srisuwan S, Robin O, Poncet V, Hamon S, De Kochko A (2009) Physical mapping of rDNA and heterochomatin in 16 Coffea species: a revisited view of species differentiation. Chromosom res 17:291–304CrossRefGoogle Scholar
  19. Hasterok R, Jenkins G, Langdon TR, Jones N, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490CrossRefGoogle Scholar
  20. Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leitch AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. Technique - A Journal of Methods in Cell and Molecular Biology 3:109–116Google Scholar
  21. Hizume M, Ishida F, Murata M (1992) Multiple locations of the rRNA genes in chromosomes of pine Pinus densiflora and P. thumbergii. Jpn J Genet 67:389–396CrossRefGoogle Scholar
  22. Iwatsuki K, Boufford DE, Ohba H (2001) Flora of Japan, vol IIb. Kodansha, Japan, pp 84–94Google Scholar
  23. Jones RN, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423CrossRefPubMedGoogle Scholar
  24. Jones RN, Diez M (2004) The B chromosome data base. Cytogenet Genome Res 106:149–150CrossRefPubMedGoogle Scholar
  25. Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 6:767–775CrossRefGoogle Scholar
  26. Kondo T, Hizume M (1982) Banding for the chromosomes of Cryptomeria japonica D. Don. J Jap For Soc 64:356–358Google Scholar
  27. Lee SH, Do GS, Seo BB (1999) Chromosomal localization of 5 S rRNA gene loci and the implications for relationships within the Allium complex. Chrom Res 7:89–93CrossRefPubMedGoogle Scholar
  28. Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18 S–5.8 S–26 S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018Google Scholar
  29. Leitch IJ, Heslop-Harrison JS (1993) Physical mapping for four sites of 5 S rDNA sequences and one side of the alpha-amylase gene in barley (Hordeum vulgare). Genome 36:517–523CrossRefPubMedGoogle Scholar
  30. Levan A, Fredga D, Sandberg AA (1964) Nomenclature for centromeric positions on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  31. Levin DA, Palestris BG, Jones RN, Trivers R (2005) Phyletic hot spots for B chromosomes in angiosperms. Evolution 59:962–969PubMedGoogle Scholar
  32. Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781CrossRefPubMedGoogle Scholar
  33. Marie D, Brown SC (1993) A cytometric excercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51CrossRefPubMedGoogle Scholar
  34. McClintock E (1957) A monograph of the genus Hydrangea. Proc Calif Acad Sci 29:147–255Google Scholar
  35. Mortreau E (2003) Etude de la variabilité génétique et de l'organisation génomique au sein d'une collection de ressources génétiques du genre Hydrangea. Ecole Nationale Supérieure agronomiques de Rennes, Ph D, p 150Google Scholar
  36. Moscone EA, Klein F, Lambru M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5 S and 18 S–25 S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233CrossRefPubMedGoogle Scholar
  37. Murata M, Heslop-Harrison JS, Motoyoshi F (1997) Physical mapping of the 5 S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clone. Plant J 12:31–37CrossRefPubMedGoogle Scholar
  38. Muratovic E, Bogunic F, Soljan D, Siljak-Yakovlev S (2005) Does Lilium bosniacum merit species rank? A classical and molecularcytogenetic approaches. Plant Syst Evol 252:97–109CrossRefGoogle Scholar
  39. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant. Ann Bot 95:119–125CrossRefPubMedGoogle Scholar
  40. Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83CrossRefGoogle Scholar
  41. Puertas MJ (2002) Nature and evolution of B chromosomes in plants: a non-coding but information-rich part of plant genome. Cytogenet Genome Res 96:198–205CrossRefPubMedGoogle Scholar
  42. Redher A (1911) Hydrangea. In: Sergent CS (ed) Plantae Wilsonianae. Cambridge University Press, Cambridge, pp 25–41Google Scholar
  43. Saylor LC (1961) A karyotypic analysis of selected species of Pinus. Silvae Genet 10:77–84Google Scholar
  44. Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5 S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88:629–636CrossRefGoogle Scholar
  45. Schoennagel E (1931) Chromomenzahl und phylogenie der Saxifragaceen. Bot Jahrb 64:266–308Google Scholar
  46. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  47. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324CrossRefPubMedGoogle Scholar
  48. Shimizu T, Kao MT (1962) Saxifragaceae of Taiwan. Flora of Taiwan 8:127–142Google Scholar
  49. Shimizu T, Kao MT (1977) Hydrangea L. In: Flora of Taiwan editorial committee, Taiwan, vol 3, pp 34–40Google Scholar
  50. Siljak-Yakovlev S (1996) La dysploïdie et l'évolution du caryotype. Bocconea 5:210–220Google Scholar
  51. Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldos V, Jelenic S, Papes D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512CrossRefPubMedGoogle Scholar
  52. Van Laere K, Van Huylenbroeck J, Van Bockstaele E (2007) Karyotype analysis and physical mapping of 45 S rRNA genes in Hydrangea species by fluorescence in situ hybridization. Plant Breed 127:301–307CrossRefGoogle Scholar
  53. Wei C, Bartholomew B (2001) Hydrangea. Flora of China. Beijing and Missouri Botanical Garden Press 8:145–157Google Scholar
  54. Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetics studies of ribosomal genes organization among 11 Quercus species. Theor Appl Genet 99:969–977CrossRefGoogle Scholar
  55. Zonneveld BJM, Leicht IJ, Bennett MD (2006) First Nuclear DNA Amounts in more than 300 Angiosperms. Ann Bot 96:229–244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Eric Mortreau
    • 1
  • Sonia Siljak-Yakovlev
    • 2
  • Malika Cerbah
    • 2
  • Spencer C. Brown
    • 3
  • Hélène Bertrand
    • 1
  • Claudie Lambert
    • 1
  1. 1.Agrocampus Ouest, centre d’Angers-Institut National d’Horticulture et de Paysage, UMR 1259 GenHort, IFR 149 QuasavAngers cedex 01France
  2. 2.CNRS, Univ Paris-Sud, AgroParisTech, UMR 8079, Ecologie, Systématique, Evolution, Université Paris-SudOrsay CedexFrance
  3. 3.Dynamique de la compartimentation cellulaire, Institut des Sciences du Végétal, CNRS UPR 2355 and IFR87Gif-sur-YvetteFrance

Personalised recommendations