Tree Genetics & Genomes

, Volume 5, Issue 3, pp 505–515 | Cite as

Genetic linkage mapping in aspen (Populus tremula L. and Populus tremuloides Michx.)

Original Paper

Abstract

A large number of simple sequence repeat (SSR) marker-containing genetic maps are available for several Populus species. For aspen however, no SSR-containing map has been published so far. In this study, genetic linkage mapping was carried out with an interspecific mapping pedigree of 61 full-sib hybrids of European × quaking aspen (Populus tremula L. × Populus tremuloides Michx.), using the two-way pseudo-testcross strategy. Amplified fragment-length polymorphism (AFLP) and SSR markers were used for mapping, resulting in the first SSR-containing genetic linkage maps for aspen. The maps allow comparisons with a Populus consensus map and other published genetic maps of the genus Populus. The maps showed good collinearity to each other and to the Populus consensus map and provide a direct link to the Populus trichocarpa genomic sequence. Sex as a morphological trait was assessed in the mapping population and mapped on a non-terminal position of linkage group XIX on the male P. tremuloides map.

Keywords

SSR AFLP Sex Linkage map Genetic map Linkage group Chromosome Populus trichocarpa 

Notes

Acknowledgement

We thank D. Krabel (Technical University of Dresden) for helpful and supportive discussions, T. Fenning (Forest Research, Northern Research Station, Roslin, UK) for language editing and A. Tusch (vTI, Großhansdorf, Germany) for her assistance in the DNA laboratories. G. von Wuehlisch is gratefully acknowledged for providing the plant material. The research funding was provided by the DFG (German Research Foundation, ProjectFL263/15-1).

References

  1. Alstrom-Rapaport C, Lascoux M, Wang YC, Roberts G, Tuskan GA (1998) Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.). J Hered 89:44–49CrossRefGoogle Scholar
  2. Bradshaw HD, Stettler RF (1994) Molecular genetics of growth and development in Populus 2: Segregation distortion due to genetic load. Theor Appl Genet 89:551–558Google Scholar
  3. Bradshaw HD, Ceulemans R, Davis J, Stettler R (2000) Emerging model systems in plant biology: Poplar (Populus) as a model forest tree. J Plant Growth Regul 19:306–313CrossRefGoogle Scholar
  4. Cervera MT, Plomion C, Malpica C (2000) Molecular markers and genome mapping in woody plants. In: Jain SM, Minocha SC (eds) Molecular Biology of Woody Plants. Kluwer, Dordrecht, pp 375–394Google Scholar
  5. Cervera MT, Sewell MM, Faivre-Rampant P, Storme V, Boerjan W (2004) Genome mapping in Populus. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Food Products, New York, pp 387–410Google Scholar
  6. Cervera MT, Storme V, Soto A, Ivens B, Van Montagu M, Rajora OP, Boerjan W (2005) Intraspecific and interspecific genetic and phylogenetic relationships in the genus Populus based on AFLP markers. Theor Appl Genet 111:1440–1456PubMedCrossRefGoogle Scholar
  7. Cervera M, Storme V, Ivens B, Gusmao J, Liu B, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809PubMedGoogle Scholar
  8. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128PubMedCrossRefGoogle Scholar
  9. Cronk QCB (2005) Plant eco-devo: the potential of poplar as a model organism. New Phytol 166:39–48PubMedCrossRefGoogle Scholar
  10. Dayanandan S, Rajora O, Bawa K (1998) Isolation and characterization of microsatellites in trembling aspen (Populus tremuloides). Theor Appl Genet 96:950–956CrossRefGoogle Scholar
  11. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  12. Eckenwalder JE (1996) Systematics and evolution of Populus. In: Stettler RF, Bradshaw HD, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research, Ottawa, Canada, pp 7–32Google Scholar
  13. Fladung M, Kaufmann H, Markussen T, Hoenicka H (2008) Construction of a Populus tremuloides Michx. BAC library. Silvae Genet 57:65–69Google Scholar
  14. Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 154:837–845PubMedGoogle Scholar
  15. Gaudet M (2006) Molecular approach to dissect adaptive traits in native European Populus nigra L.: construction of a genetic linkage map based on AFLP, SSR and SNP markers. PhD thesis at the Universita Degli Studi Della Tuscia, p 152Google Scholar
  16. Gaudet M, Jorge V, Paolucci I, Beritognolo I, Scarascia Mugnozza G, Sabatti M (2007) Genetic linkage maps of Populus nigra L. including AFLPs, SSRs, SNPs, and sex trait. Tree Genetics Genomes 4:25–36CrossRefGoogle Scholar
  17. Gibson S, Sommerville C (1993) Isolating plant genes. Trends Biotechnol 11:306–313PubMedCrossRefGoogle Scholar
  18. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a Pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  19. Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  20. Hanley S, Barker JHA, Van Ooijen JW, Aldam C, Harris SL, Ahman I, Larsson S, Karp A (2002) A genetic linkage map of willow (Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet 105:1087–1096PubMedCrossRefGoogle Scholar
  21. Hegi G (1957) Illustrierte Flora von Mittel-Europa III. Carl Hanser Verlag, München, pp 24–45Google Scholar
  22. Howe GT, Brunner AM (2005) An evolving approach to understanding plant adaptation. New Phytol 167:1–5PubMedCrossRefGoogle Scholar
  23. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugenic 12:172–175Google Scholar
  24. Kuang H, Richardson T, Carson S, Wilcox P, Bongarten B (1999) Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. I. Genetic map with distorted markers. Theor Appl Genet 98:697–703CrossRefGoogle Scholar
  25. Li B, Wu R (1996) Genetic causes of heterosis in juvenile aspen: A quantitative comparison across intra- and inter-specific hybrids. Theor Appl Genet 93:380–391CrossRefGoogle Scholar
  26. Liu Z, Furnier GR (1993) Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor Appl Genet 87:97–105Google Scholar
  27. Liesebach M, von Wühlisch G, Muhs H-J (2000) Überlegenheit von Aspen-Arthybriden bei der Biomasseproduktion im Kurzumtrieb. Die Holzzucht 12:11–18Google Scholar
  28. Markussen T, Pakull B, Fladung M (2007) Positioning of sex-correlated markers for Populus in a AFLP- and SSR-marker based genetic map of Populus tremula x tremuloides. Silvae Genet 56:180–184Google Scholar
  29. Markussen T, Tusch A, Stephan BR, Fladung M (2002) Identification of molecular markers for selected wood properties of Norway spruce Picea abies L (Karst.) I. Wood density. Silvae Genetica 53(2):45–50Google Scholar
  30. McLetchie DN, Tuskan GA (1994) Gender determination in Populus. Norw J Agric Sci 18:57–66Google Scholar
  31. Perala DA (1990) Quaking aspen. In: Burns RM, Honkala BH (eds) Silvics of North America: 2 Hardwoods Agriculture Handbook 654. USDA Forest Service, Washington DC, pp 555–569Google Scholar
  32. Rahman MH, Dayanandan S, Rajora OP (2000) Microsatellite DNA markers in Populus tremuloides. Genome 43:293–297PubMedCrossRefGoogle Scholar
  33. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645–654PubMedGoogle Scholar
  34. Smulders M, Van der Schoot J, Arens P, Vosman B (2001) Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Mol Ecol Notes 1:188–190CrossRefGoogle Scholar
  35. Strauss S, Martin F (2004) Poplar genomics comes of age. New Phytol 164:1–4CrossRefGoogle Scholar
  36. Tamm U (2001) Populus tremula L. In: Schütt P, Schuck HJ, Lang UM, Roloff A (eds) Enzyklopädie der Holzgewächse, 23rd supplement 3/01. Ecomed, Landsberg a. Lech, Germany, pp 1–10Google Scholar
  37. Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot-London 90:681–689CrossRefGoogle Scholar
  38. Tuskan GA, Gunter LE, Yang ZK, Yin TM, Sewell MM, DiFazio SP (2004) Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Can J For Res 34:85–93CrossRefGoogle Scholar
  39. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  40. Van der Schoot J, Pospiskova M, Vosman B, Smulders M (2000) Development and characterization of microsatellite markers in black poplar (Populus nigra L.). Theor Appl Genet 101:317–322CrossRefGoogle Scholar
  41. Van Ooijen JW, Voorrips RE (2001) JoinMap Version 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen The NetherlandsGoogle Scholar
  42. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. The J Hered 93:77–78CrossRefGoogle Scholar
  43. Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP - a new technique for DNA-fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  44. Woolbright SA, DiFazio SP, Yin T, Martinsen GD, Zhang X, Allan GJ, Whitham TG, Keim P (2007) A dense linkage map of hybrid cottonwood (Populus fremontii × P. angustifolia) contributes to long-term ecological research and comparison mapping in a model forest tree. Heredity 100:59–70PubMedCrossRefGoogle Scholar
  45. Wu R, Han Y, Hu J, Fang J, Li L, Li M, Zeng Z (2000a) An integrated genetic map of Populus deltoides based on amplified fragment length polymorphisms. Theor Appl Genet 100:1249–1256CrossRefGoogle Scholar
  46. Wu RL, Yin TM, Huang MR, Wang MX (2000b) The application of marker-assisted selection to tree breeding. Sci Silvae Sin 36:103–113Google Scholar
  47. Yin TM, DiFazio SP, Gunter LE, Riemenschneider D, Tuskan GA (2004a) Large-scale heterospecific segregation distortion in Populus revealed by a dense genetic map. Theor Appl Genet 109:451–463PubMedCrossRefGoogle Scholar
  48. Yin TM, DiFazio SP, Gunter LE, Jawdy SS, Boerjan X, Tuskan GA (2004b) Genetic and physical mapping of Melampsora rust resistance genes in Populus and characterization of linkage disequilibrium and flanking genomic sequence. New Phytol 164:95–105CrossRefGoogle Scholar
  49. Yin TM, Huang M, Wang M, Zhu LH, Zeng ZB, Wu RL (2001) Preliminary interspecific genetic maps of the Populus genome constructed from RAPD markers. Genome 44:602–609PubMedCrossRefGoogle Scholar
  50. Yin TM, Zhang XY, Huang MR, Wang MX, Zhuge Q, Zhu LH, Wu RL (2002) Molecular linkage maps of the Populus genome. Genome 45:541–555PubMedCrossRefGoogle Scholar
  51. Yin TM, DiFazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA, Allan GJ, Kelleher CT, Douglas CJ, Wang M, Tuskan GA (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430PubMedCrossRefGoogle Scholar
  52. Yu QB, Tigerstedt PMA, Haapanen M (2001) Growth and phenology of hybrid aspen clones (Populus tremula L. × Populus tremuloides Michx.). Silva Fenn 35:15–25Google Scholar
  53. Zhang D, Zhang Z, Yang K, Li B (2004) Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl Genet 108:657–662PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Johann Heinrich von Thünen-Institut (vTI), Institute for Forest GeneticsGrosshansdorfGermany
  2. 2.Technical University of Dresden, Institute of Forest Botany and Forest Zoology, Molecular Tree Physiology GroupTharandtGermany

Personalised recommendations