Tree Genetics & Genomes

, Volume 5, Issue 3, pp 435–446 | Cite as

Analysis of genetic structure in a sample of coffee (Coffea arabica L.) using fluorescent SSR markers

  • German López-Gartner
  • Hernando Cortina
  • Susan R. McCouch
  • Maria Del Pilar Moncada
Original Paper


The knowledge of population structure is important to determine the degree of linkage disequilibrium, which allows the selection of genotypes for association mapping. Using 47 SSR markers, the genetic variability and population structure of 68 accessions of C. arabica (wild and cultivated) and of three diploid species used as reference were evaluated. The analysis was done with the distance method and the structure model. The structure analysis inferred nine subpopulations (k = 9), for which the greatest values of probability were obtained. Three of the groups corresponded to the three diploid species as expected. There were six groups identified within C. arabica. The genetic subdivisions within C. arabica were based on geographical origin, degree of domestication, and dispersal history of coffee. One group consisted entirely of cultivated genotypes, where intense population bottleneck were associated with a founder effect. This was the most homogeneous group, as demonstrated by the reduced distance between cultivars in the dendrogram. Three of the cultivated genotypes, originating from Sudan, were separated into an independent group, presumably due to selective adaptation to a different set of environmental conditions. Another group consisted of genotypes of the type “ennarea” that were grown and cultivated in isolation on the shores of the Tana lake. The semi-wild genotypes clustered into three different groups. This type of analysis provides a strong evidence of population structure in C. arabica. Based on these findings, it is possible to better identify a balanced sample of diverse plants in germplasm.


Coffee arabica Population structure Microsatellite markers 



The authors want to thank the Ministry of Agriculture of Colombia for financing this work; to the collaborators in Cenicafe’s lab for extraction of DNA samples and to Yong Gu Cho and Sandra Harrigton at Cornell University for helping us with lab protocols and data analysis.


  1. Anthony F, Berthaud J, Guillaument JL, Lourd M (1987) Collecting wild Coffea species in Kenya and Tanzania. Plant Genet Resour News 169:23–29Google Scholar
  2. Anthony F, Combes MC, Astorga DCG, Bertrand B, Graziosi G, Lashermes P (2002) The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers. Theor Appl Gen (Alemania) 104(5):894–900, 36 RefsCrossRefGoogle Scholar
  3. Bernatzky R, Tanksley SD (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898PubMedGoogle Scholar
  4. Berthaud J, Charrier A (1988) Genetic resources of Coffea. In: Clarke RJ, Macrae R (eds) Coffee vol. 4: agronomy. Elsevier, London, pp 1–42Google Scholar
  5. Carvalho A (1946) Distribuiçäo geografica e classificaçäo botánica do gênero Coffea com referência especial à espécie Arabica. V origem e classificaçäo botánica do C. arabica L. Bol Super Serv Caf 21:174–180Google Scholar
  6. Carvalho A (1952) Taxonomia de Coffea arabica L. Caracteres morfologicos dos haploides. Bragantia 12:201–212Google Scholar
  7. Chevalier A, Dagron M (1928) Recherches historiques sur les débuts de la culture du caféier en Amerique. Commun Actes Acad Sci Colonial ParisGoogle Scholar
  8. Eskes AB (1989) Identification, description and collection of coffee types in P.D.R. Yemen. IPGRI, RomeGoogle Scholar
  9. Fernie, L.M. FAO Coffee survey in Ethiopia. In: FAO Coffee Mission to Ethiopia, 1964–1968. Roma (Italia), FAO, 1968. p. 6–31Google Scholar
  10. Goncalves MM, Rodrigues ML (1976) Estudos sobre o café de Timor. II. Nota sobre as possibilidades de producao do Híbrido de Timor no seu habitat natural. Lisboa (Portugal), MEAU. p. 31–72. Port. (Comunicacoes No. 86)Google Scholar
  11. Grassias M, Kammacher P (1975) Observations sur la conjugaison chromosomique de Coffea arabica L. Café Cacao Thé 19:177–190Google Scholar
  12. Haarer AF (1956) Modern coffee production. Leonard Hill, LondonGoogle Scholar
  13. Jones PA (1956) Notes on the varieties of Coffea arabica in Kenya. In: SELECTED articles on coffee culture; a bibliography and selected articles from the Coffee Board of Kenya Monthly Bulletin 1935–1956. Ruiru. Kenya Coffee (Kenya) 21(251):305–309Google Scholar
  14. Lashermes P, Cros J, Combes MC, Trouslot P, Anthony F, Hamon S, Charrier A (1996) Inheritance and restriction fragment length polymorphism of chloroplast DNA in the genus Coffea L. Theor Appl Genet 93:626–632CrossRefGoogle Scholar
  15. Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterization and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266PubMedCrossRefGoogle Scholar
  16. Lashermes P, Paczek V, Trouslot P, Combes MC, Couturon E, Charrier A (2000) Single-locus inheritance in the allotetraploid Coffea arabica L. and interspecific hybrid C. arabica x C. canephora. J Hered 91:81–85PubMedCrossRefGoogle Scholar
  17. Lejeune JBH (1958) Rapport au Gouvernement Impérial d’Ethiopie sur la production caféière. FAO, RomeGoogle Scholar
  18. Liu K, Muse SV (2005) PowerMarker integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129PubMedCrossRefGoogle Scholar
  19. Meyer FG (1968) FAO coffee mission to Ethiopia 1964–1965 Report. FAO, RomeGoogle Scholar
  20. Moncada MDP, McCouch SR (2004) Simple sequence repeat diversity in diploid and tetraploid Coffea species. Genome (Canadá) 47:501–509CrossRefGoogle Scholar
  21. Montoya CJC, Moncada MDP, Mendoza FGA, Lopez GGA (2006) Optimización y caracterización de SSRs en una muestra del banco de germoplasma de Coffea de Cenicafé. Fitotecnia Colombiana (Colombia) 6(2):44–51Google Scholar
  22. Nei M (1972) Genetic distance between populations. Amer Naturalist 106:283–292CrossRefGoogle Scholar
  23. Orozco-Castillo C, Chalmers KJ, Waugh R, Powell W (1994) Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor Appl Genet 87:934–940CrossRefGoogle Scholar
  24. Pritchard JK, Stephen M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  25. Rosemberg NA (2002) Distruct: a program for the graphical display of structure results.
  26. Rosemberg NA (2004) Distruct: a program for the graphical display of structure results. Molecular Ecology Notes 4:137–138CrossRefGoogle Scholar
  27. Rovelli P, Mettulio R, Anthony F, Anzueto F, Lashermes P, Graziosi G (2000) Microsatellites in Coffea arabica. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality: 123–133. Kluwer, DordrechtGoogle Scholar
  28. Semon M, Nielsen R, Jones M, McCouch S (2005) The population structure of African cultivated rice Oryza Glaberrima (Steud.): evidence for elevated levels of LD caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647PubMedCrossRefGoogle Scholar
  29. Smith RF (1985) A history of coffee. In: Clifford MN, Wilson KC (eds) Coffee botany, biochemistry and production of beans and beverage. Croom Helm, London Sydney, pp 1–12Google Scholar
  30. Sneath PHA, Sokal RR (1973) Numerical Taxonomy. W. H. Freeman, San Francisco, CAGoogle Scholar
  31. Sylvain PG (1955) Some observations on Coffea arabica L. in Ethiopia. Turrialba 5:37–53Google Scholar
  32. Thomas AS (1942) The wild arabica coffee on the Boma Plateau. Anglo-Egyptian Sudan. Emp Exp Agric 10:207–212Google Scholar
  33. Vega FE, Eric R, Collins W (2003) Global project needed to tackle coffee crisis. Nature 425:343PubMedCrossRefGoogle Scholar
  34. Wellman FL (1961) Coffee, botany, cultivatiotn and utilization. Leonard Hill, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • German López-Gartner
    • 1
  • Hernando Cortina
    • 2
  • Susan R. McCouch
    • 3
  • Maria Del Pilar Moncada
    • 2
  1. 1.Department of Biological SciencesCaldas UniversityManizalesColombia
  2. 2.Department of Plant BreedingCENICAFEChinchináColombia
  3. 3.Department of Plant BreedingCornell UniversityIthacaUSA

Personalised recommendations