Tree Genetics & Genomes

, Volume 5, Issue 1, pp 225–234 | Cite as

High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.)

  • Andrew J. Eckert
  • Barnaly Pande
  • Elhan S. Ersoz
  • Mark H. Wright
  • Vanessa K. Rashbrook
  • Charles M. Nicolet
  • David B. Neale
Original Paper


The development and application of genomic tools to loblolly pine (Pinus taeda L.) offer promising insights into the organization and structure of conifer genomes. The application of a high-throughput genotyping assay across diverse forest tree species, however, is currently limited taxonomically. This is despite the ongoing development of genome-scale projects aiming at the construction of expressed sequence tag (EST) libraries and the resequencing of EST-derived unigenes for a diverse array of forest tree species. In this paper, we report on the application of Illumina’s high-throughput GoldenGate™ SNP genotyping assay to a loblolly pine mapping population. Single nucleotide polymorphisms (SNPs) were identified through resequencing of previously identified wood quality, drought tolerance, and disease resistance candidate genes prior to genotyping. From that effort, a 384 multiplexed SNP assay was developed for high-throughput genotyping. Approximately 67% of the 384 SNPs queried converted into high-quality genotypes for the 48 progeny samples. Of those 257 successfully genotyped SNPs, 70 were segregating within the mapping population. A total of 27 candidate genes were subsequently mapped onto the existing loblolly pine consensus map, which consists of 12 linkage groups spanning a total map distance of 1,227.6 cM. The ability of SNPs to be mapped to the same position as fragment-based markers previously developed within the same candidate genes, as well as the pivotal role that SNPs currently play in the dissection of complex phenotypic traits, illustrate the usefulness of high-throughput SNP genotyping technologies to the continued development of pine genomics.


Loblolly pine Pinus taeda Linkage mapping Single nucleotide polymorphisms GoldenGate™ Genotyping Genomics 



We would like to thank Jill Wegrzyn and Jennifer Lee for the bioinformatic support, as well as Kathleen Jermsted for the help in the production and interpretation of linkage maps. We would also like to thank C. Dana Nelson and Craig Echt for providing the SSR data. This research was supported by NSF grant DBI-0501763.

Supplementary material

11295_2008_183_MOESM1_ESM.doc (124 kb)
ESM 1 (DOC 127 kb)


  1. Acheré V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, Favre J-M (2004) A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor Appl Genet 108:1602–1613PubMedCrossRefGoogle Scholar
  2. Adams WT, Joly RJ (1980) Linkage relationships among twelve allozyme loci in loblolly pine. J Heredity 71:199–202Google Scholar
  3. Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genet 54:126–137Google Scholar
  4. Brown GR, Kadel EE III, Bassoni DA, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809PubMedGoogle Scholar
  5. Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine III. QTL verification and candidate gene mapping. Genetics 164:1537–1546PubMedGoogle Scholar
  6. Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101:15255–15260PubMedCrossRefGoogle Scholar
  7. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99PubMedCrossRefGoogle Scholar
  8. Clayton DG, Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ, Lam AC, Ovington NR, Stevens HE, Nutland S, Howson JMM, Faham M, Moorhead M, Jones HB, Falkowski M, Hardenbol P, Willis TD, Todd JA (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat Genet 37:1243–1246PubMedCrossRefGoogle Scholar
  9. Conkle MT (1981) Isozyme variation and linkage in six conifer species. In: Conkle MT (ed) Proceedings of the Symposium on Isozymes of North American Forest Trees and Forest Insects. General Technical Report GTR-PSW-048, USDA Forest Service, BerkeleyGoogle Scholar
  10. Devey ME, Fiddler TA, Liu BH, Knapp SJ, Neale DB (1994) An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree. Theor Appl Genet 88:273–278CrossRefGoogle Scholar
  11. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harbor Symp Quant Biol 68:69–78PubMedCrossRefGoogle Scholar
  12. Gill GP, Brown GR, Neale DB (2003) A sequence mutation in the cinnamyl alcohol dehydronase gene associated with altered lignification in loblolly pine. Plant Biotech J 1:253–258CrossRefGoogle Scholar
  13. González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag SNPs at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926PubMedCrossRefGoogle Scholar
  14. González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175:399–409PubMedCrossRefGoogle Scholar
  15. González-Martínez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26PubMedCrossRefGoogle Scholar
  16. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-test cross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  17. Groover AT, Devey ME, Fiddler TA, Lee JM, Megraw RA, Mitchell-Olds T, Sherman BK, Vujcic SL, Williams CG, Neale DB (1994) Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138:1293–1300PubMedGoogle Scholar
  18. Harry DE, Temesgen B, Neale DB (1998) Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones. Theor Appl Genet 97:327–336CrossRefGoogle Scholar
  19. Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174:2095–2105PubMedCrossRefGoogle Scholar
  20. Hu X-S, Goodwillie C, Ritland KM (2004) Joining genetic linkage maps using a joint likelihood function. Theor Appl Genet 109:996–1004PubMedCrossRefGoogle Scholar
  21. Hyten DL, Song Q, Choi I-Y, Yoon M-S, Specht JE, Matulumalli LK, Nelso RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952PubMedCrossRefGoogle Scholar
  22. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314CrossRefGoogle Scholar
  23. Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir I. Timing of vegetative bud flush. Theor Appl Genet 102:1142–1151CrossRefGoogle Scholar
  24. Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci 2:356–359CrossRefGoogle Scholar
  25. Komulainen P, Brown GR, Mikkonen M, Karku A, Garcia-Gil MR, O’Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678PubMedCrossRefGoogle Scholar
  26. Kosambi DD (1944) The estimation of map values from recombination values. Ann Eugen 12:172–175Google Scholar
  27. Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461PubMedCrossRefGoogle Scholar
  28. Kwok P-Y (2001) SNP genotyping with fluorescence polarization detection. Human Mutat 19:315–323CrossRefGoogle Scholar
  29. Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligase-mediated gene detection technique. Science 241:1077–1080PubMedCrossRefGoogle Scholar
  30. Ledig FT (1998) Genetic variation in pines. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 251–280Google Scholar
  31. Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9:720–731PubMedGoogle Scholar
  32. McKay SD, Schnabel RD, Murdoch BM, Aerts J, Gill CA, Gao C, Li C, Matukumalli LK, Stothard P, Wang Z, Van Tassell CP, Williams JL, Taylor JF, Moore SS (2007) Construction of bovine whole-genome radiation hybrid and linkage maps using high-throughput genotyping. Anim Genet 38:120–125PubMedCrossRefGoogle Scholar
  33. Murray BG (1998) Nuclear DNA amount in gymnosperms. Ann Bot 82(Suppl A):3–15CrossRefGoogle Scholar
  34. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324PubMedCrossRefGoogle Scholar
  35. Neale DB (2007) Genomics to tree breeding and forest health. Curr Opin Genet Dev 17:539–544PubMedCrossRefGoogle Scholar
  36. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330PubMedCrossRefGoogle Scholar
  37. Neale DB, Sewell MM, Brown GR (2002) Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Ann For Sci 59:595–605CrossRefGoogle Scholar
  38. Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques (Suppl):56–58 (60–61)Google Scholar
  39. Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21PubMedCrossRefGoogle Scholar
  40. Remington DL, Wheten RW, Liu B-H, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292PubMedCrossRefGoogle Scholar
  41. Ritter E, Aragonés A, Markussen T, Acheré V, Espinel S, Fladung M, Wrobel S, Faivre-Rampant, Jeandroz S, Favre JM (2002) Towards construction of an ultra high density linkage map for Pinus pinaster. Ann For Sci 59:637–643CrossRefGoogle Scholar
  42. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661PubMedCrossRefGoogle Scholar
  43. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, The International HapMap Consortium (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918PubMedCrossRefGoogle Scholar
  44. Savolainen O, Pyhäjärvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10:162–167PubMedCrossRefGoogle Scholar
  45. Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.) I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330PubMedGoogle Scholar
  46. Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.) I. Physical wood properties. Theor Appl Genet 101:1273–1281CrossRefGoogle Scholar
  47. Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.) II. Chemical wood properties. Theor Appl Genet 104:214–222PubMedCrossRefGoogle Scholar
  48. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  49. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Bitechnol J 2:41–49CrossRefGoogle Scholar
  50. Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimuru H, Murai M, Nagasaka K, Tsumura Y (2003) A consensus linkage map for Sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568PubMedGoogle Scholar
  51. Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102:664–675CrossRefGoogle Scholar
  52. Thorisson GA, Smith AV, Krishman L, Stein LD (2005) The International HapMap project website. Genome Res 15:1592–1593PubMedCrossRefGoogle Scholar
  53. Zhou Y, Bui T, Auckland LD, Williams CG (2002) Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45:91–99PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrew J. Eckert
    • 1
  • Barnaly Pande
    • 2
  • Elhan S. Ersoz
    • 3
  • Mark H. Wright
    • 4
  • Vanessa K. Rashbrook
    • 5
  • Charles M. Nicolet
    • 5
  • David B. Neale
    • 2
  1. 1.Section of Evolution and EcologyUniversity of California at DavisDavisUSA
  2. 2.Department of Plant SciencesUniversity of California at DavisDavisUSA
  3. 3.Institute for Genomic DiversityCornell UniversityIthacaUSA
  4. 4.Department of Molecular Biology and GeneticsCornell UniversityIthacaUSA
  5. 5.DNA Technologies Core Facility, Genome CenterUniversity of California at DavisDavisUSA

Personalised recommendations