Tree Genetics & Genomes

, Volume 5, Issue 1, pp 93–107 | Cite as

Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences

  • J.-M. Celton
  • D. S. Tustin
  • D. Chagné
  • S. E. Gardiner
Original Paper


Marker-assisted selection (MAS) offers quick and reliable prediction of the phenotypes of seedlings in large populations and thus opens new approaches for selection to breeders of apple (Malus x domestica Borkh.). The development of framework maps enables the discovery of genetic markers linked to desired traits. Although genetic maps have been reported for apple scion cultivars, none has previously been constructed for apple rootstocks. We report the construction of framework genetic maps in a cross between ‘M.9’ (‘Malling 9’) and ‘R.5’ (‘Robusta 5’) apple rootstocks. The maps comprise 224 simple sequence repeat (SSR) markers, 18 sequence-characterised amplified regions, 14 single nucleotide polymorphisms and 42 random amplified polymorphic DNAs. A new set of 47 polymorphic SSRs was developed from apple EST sequences and used for construction of this rootstock map. All 17 linkage groups have been identified and aligned to existing apple genetic maps. The maps span 1,175.7 cM (‘M.9’) and 1,086.7 cM (‘R.5’). To improve the efficiency of mapping markers to this framework map, we developed a bin mapping set. Applications of these new genetic maps include the elucidation of the genetic basis of the dwarfing effect of the apple rootstock ‘M.9’ and the analysis of disease and insect resistance traits such as fire blight (Erwinia amylovora), apple scab (Venturia inaequalis) and woolly apple aphid (Eriosoma lanigerum). Markers for traits mapped in this population will be of direct use to apple breeders for MAS and for identification of causative genes by map-based cloning.


Apple Genetic map SSR Molecular markers EST 



The authors thank Toshiya Yamamoto for providing Pyrus SSR primer sequences prior to deposition in the public database. This work was partially supported by the New Zealand Foundation for Research, Science and Technology, contract no. CO6X0205.


  1. Aldwinckle HS, Beer SV (1979) Fire blight and its control. Hortic Rev 1:425–476Google Scholar
  2. Boudichevskaia A, Fischer C, Flachowsky H, Hanke V, Dunemann F (2004) Development of molecular markers for (Vr1, a scab resistance factor from R12740-7A apple. Acta Hort 663:171–176Google Scholar
  3. Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hort 595:43–47Google Scholar
  4. Bus VGM, Chagné D, Bassett HCM, Bowatte D, Calenge F, Celton J-M, Durel CE, Malone MT, Patocchi A, Ranatunga AC, Rikkerink EHA, Tustin DS, Zhou J, Gardiner SE (2008) Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genetics and Genomes 4:233–236CrossRefGoogle Scholar
  5. Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg E, Parisi L, Durel C-E (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379PubMedCrossRefGoogle Scholar
  6. Calenge F, Drouet D, Denancé C, Van de Weg WE, Brisset M-N, Paulin J-P, Durel C-E (2005) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135PubMedCrossRefGoogle Scholar
  7. Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics 8:212PubMedCrossRefGoogle Scholar
  8. Conner PJ, Brown SK, Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J Am Soc Hortic Sci 122:350–359Google Scholar
  9. Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  10. Dirlewanger E, Cosson P, Tavaud M, Aranzana M, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138PubMedCrossRefGoogle Scholar
  11. FAO (2005) FAOSTAT database 2000. (October 2007)
  12. Fernández-Fernández F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6:1039–1041CrossRefGoogle Scholar
  13. Gardiner S, Bus V, Bassett H, White A, Noiton D, Rikkerink E, Ball R, Forester R (1999) An updated genetic map around the Vf gene for resistance to apple scab and marker assisted selection for resistance. Acta Hort 484:481–485Google Scholar
  14. Gardiner S, Murdoch J, Meech S, Rusholme R, Bassett H, Cook M, Bus V, Rikkerink E, Gleave A, Crowhurst R, Ross G, Warrington I (2003) Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hort 622:141–151Google Scholar
  15. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076CrossRefGoogle Scholar
  16. Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W (2004) The construction of a genetic linkage map of the red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749PubMedCrossRefGoogle Scholar
  17. Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus x domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotechnol 81:39–44Google Scholar
  18. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Basset H, Forster R (1997) Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254CrossRefGoogle Scholar
  19. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709PubMedCrossRefGoogle Scholar
  20. Hemmat M, Weeden NF, Conner PJ, Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J Am Soc Hortic Sci 122:347–349Google Scholar
  21. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus x domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128:515–520Google Scholar
  22. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott A, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  23. Johnson E, Leonard JM, Zemetra RS, Riera-Lizarazu O (2007) Mapping the Compactum (C) locus in wheat. Plant and Animal Genome XIV Conference, San Diego, Poster 295Google Scholar
  24. Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus x domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed 15:205–219CrossRefGoogle Scholar
  25. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  26. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  27. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  28. Markussen T, Krüger J, Schmidt H, Dunemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pl 1 from Malus robusta in cultivated apple. Plant Breed 114:530–534CrossRefGoogle Scholar
  29. Monforte AJ, Arús P, Deleu W, González M, Fernández-Silva I, Moreno E, Puignomènech P, Blanca J, Nuez F, Picó B, Roig C, Garcia-MAS J (2007) Mapping melon ESTs by selective genotyping. Plant and Animal Genome XIV Conference, San Diego, Poster W96Google Scholar
  30. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30:194–200PubMedCrossRefGoogle Scholar
  31. Naik S, Hampson C, Gasic K, Bakkeren G, Korban SS (2006) Development and linkage mapping of E-STS and RGA markers for functional gene homologs in apple. Genome 49:959–968PubMedCrossRefGoogle Scholar
  32. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analysis of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedCrossRefGoogle Scholar
  33. Oddou-Muratorio S, Alignon C, Decroocq S, Plomion C, Lamant T, Mush-Demesure B (2001) Microsatellite primers for Sorbus torminalis and related species. Mol Ecol Notes 1:297–299CrossRefGoogle Scholar
  34. Peil A, Richter K, Garcia-Libreros T, Hanke M-V, Flachowsky H, Celton J-M, Horner M, Gardiner S, Bus V (2008) Confirmation of the fire blight QTL of Malus x robusta 5 on linkage group 3. Acta Horticulturae (in press)Google Scholar
  35. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386Google Scholar
  36. Rusholme Pilcher RL, Celton J-M, Gardiner SE, Tustin DS (2008) Genetic markers linked to the dwarfing trait of apple rootstock ‘Malling 9’. J Am Soc Hortic Sci 133:100–106Google Scholar
  37. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genetics and Genomes 2:202–224CrossRefGoogle Scholar
  38. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  39. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264CrossRefGoogle Scholar
  40. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520PubMedCrossRefGoogle Scholar
  41. Van Dyk MM, Koning G, Simayi Z, Booi S, Maharaj R, Selada MC, Rees DJG (2005) Development of microsatellite markers for marker-assisted breeding in pears (Pyrus spp.). Acta Horticulturae 671:307–313Google Scholar
  42. Van Ooijen JW, Voorrips RE (2001) JoinMapR 3.0: software for the calculation of genetic linkage maps. Wageningen, The NetherlandsGoogle Scholar
  43. Vision TJ, Brown DG, Shmoys DB, Durrett RT, Tanksley SD (2000) Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics 155:407–420PubMedGoogle Scholar
  44. Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI Publishing, CAB InternationalGoogle Scholar
  45. Yamamoto T (2007) Marker information submitted via the DNA data bank of Japan and NCBIGoogle Scholar
  46. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870CrossRefGoogle Scholar
  47. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137CrossRefGoogle Scholar
  48. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16CrossRefGoogle Scholar
  49. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18PubMedGoogle Scholar
  50. Yamamoto T, Kimura T, Saito T, Kotobuki K, Matsuta N, Liebhard R, Gessler C, Van de Weg E, Hayashi T (2004) Genetic linkage maps of Japanese and European pears aligned to the apple consensus map. Acta Horticulturae 663:51–56Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J.-M. Celton
    • 1
  • D. S. Tustin
    • 2
  • D. Chagné
    • 1
  • S. E. Gardiner
    • 1
  1. 1.Horticulture and Food Research Institute of New Zealand LtdPalmerston North Research CenterPalmerston NorthNew Zealand
  2. 2.Horticulture and Food Research Institute of New Zealand LtdHawkes Bay Research CenterHavelock NorthNew Zealand

Personalised recommendations