Tree Genetics & Genomes

, Volume 5, Issue 1, pp 41–51

A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellite, gene-specific and isoenzyme markers

  • J. B. Clarke
  • D. J. Sargent
  • R. I. Bošković
  • A. Belaj
  • K. R. Tobutt
Original Paper

Abstract

One hundred and sixty microsatellite (simple sequence repeat (SSR)) and six gene-specific markers revealing 174 loci were scored in 94 seedlings from the inter-specific cross of Prunus avium ‘Napoleon’ × Prunus nipponica accession F1292. The co-segregation data from these markers were used to construct a linkage map for cherry which spanned 680 cM over eight linkage groups with an average marker spacing of 3.9 cM per marker and just six gaps longer than 15 cM. Markers previously mapped in Prunus dulcis ‘Texas’ × Prunus persica ‘Earlygold’ allowed the cherry map to be anchored to the peach × almond map and showed the high level of synteny between the species. Eighty-four loci segregated in P. avium ‘Napoleon’ versus 159 in P. nipponica. The segregations of 32 isoenzyme loci in a subset of 47 seedlings from the progeny were scored, using polyacrylamide gel electrophoresis and/or isoelectric focusing separation followed by activity staining, and the co-segregation data were analysed along with those for 39 isoenzymes reported previously and for the 174 sequence-tagged site loci plus an additional two SSR loci. The second map incorporates 233 loci and spans 736 cM over eight linkage groups with an average marker spacing of 3.2 cM per marker and just two gaps greater than 15 cM. The microsatellite map will provide a useful tool for cherry breeding and marker-assisted selection and for synteny studies within Prunus; the gene-specific markers and isoenzymes will be useful for comparisons with maps of other rosaceous fruit crops.

Keywords

Prunus avium Linkage map SSR Isoenzyme Gene-specific marker Synteny 

Supplementary material

11295_2008_166_MOESM1_ESM.doc (264 kb)
Table S1Monogenic segregation ratios and chi-squared values for goodness of fit to expected Mendelian segregation ratios for 174 loci (160 SSR and six gene-specific markers) scored in PA × PN including their linkage group location. The suffixes A, B and C distinguish multiple loci revealed by particular primers. Segregation ratios deviating significantly from the expected ratios (P ≤ 0.05, 0.01, 0.001) are indicated with one, two or three asterisks, respectively (DOC 264 KB)
11295_2008_166_MOESM2_ESM.doc (79 kb)
Table S2Monogenic segregation ratios and chi-squared values for goodness of fit to expected Mendelian segregation ratios for 32 isoenzyme and two SSR loci scored in a 47 seedling subset of the PA × PN progeny including their linkage group location. The suffixes -1, -2, -3, etc. distinguish multiple isoenzyme loci detected with PAGE and -a, -b, -c for cathodal and -z, -y, -x, etc. for anodal loading with IEF. Segregation ratios deviating significantly from the expected ratios (P ≤ 0.05, 0.01, 0.001) are indicated with one, two or three asterisks, respectively (DOC 79.0 KB)

References

  1. Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92CrossRefGoogle Scholar
  2. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  3. Ballester J, Boskovic R, Batlle I, Arus P, Vargas F, de Vicente MC (1998) Location of the self-incompatibility gene on the almond linkage map. Plant Breed 117:69–72CrossRefGoogle Scholar
  4. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Gen 3:341–350CrossRefGoogle Scholar
  5. Bošković R, Tobutt KR (1996) Correlation of stylar ribonuclease zymograms with incompatibility alleles in sweet cherry. Euphytica 90:245–250CrossRefGoogle Scholar
  6. Bošković R, Tobutt KR (1998) Inheritance and linkage relationships of isoenzymes in two interspecific cherry progenies. Euphytica 103:273–286CrossRefGoogle Scholar
  7. Bošković R, Tobutt KR, Arus P, Messeguer R (1994) Isoenzymes. In: Messeguer R (ed) Methods of molecular marker analysis in Prunus. IRTA, Barcelona, pp 4–25Google Scholar
  8. Bošković R, Tobutt KR, Nicoll FJ (1997) Inheritance of isoenzymes and their linkage relationships in two interspecific cherry progenies. Euphytica 93:129–143CrossRefGoogle Scholar
  9. Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Amer Soc Hortic Sci 126:205–209Google Scholar
  10. Cheliak WM, Pitel JA (1984) Techniques for starch gel electrophoresis of enzymes from forest tree species. In: Information report PI-X-42 of Petawawa National Forestry Institute. Agriculture Canada, pp 1–49Google Scholar
  11. Chevreau E, Leuliette S, Gallet M (1997) Inheritance and linkage of isoenzyme loci in pear (Pyrus communis L.). Theor Appl Genet 94:498–506CrossRefGoogle Scholar
  12. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  13. Clarke JB, Tobutt KR (2003) Development and characterisation of polymorphic microsatellites Prunus avium ‘Napoleon’. Mol Ecol Notes 3:578–580CrossRefGoogle Scholar
  14. Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88:215–221Google Scholar
  15. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138PubMedCrossRefGoogle Scholar
  16. Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. PNAS 101:9891–9896PubMedCrossRefGoogle Scholar
  17. Dondini L, Costa E, Tataranni G, Tartarini S, Sansavini S (2006) Cloning of apricot RGAs (resistance gene analogs) and development of molecular markers associated with Sharka (PPV) resistance. J Hort Sci Biotech 79:729–734Google Scholar
  18. Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Amer Soc Hort Sci 125:76–80Google Scholar
  19. Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159PubMedCrossRefGoogle Scholar
  20. Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716PubMedGoogle Scholar
  21. Foulongne M, Pascal T, Arus P, Kervella J (2003) The potential of Prunus davidiana for introgression into peach [Prunus persica (L.) Batsch] assessed by comparative mapping. Theor Appl Genet 107:227–238PubMedCrossRefGoogle Scholar
  22. Fukatsu E, Isoda K, Hirao T, Takahashi M, Watanabe A (2005) Development and characterization of simple sequence repeat DNA markers for Zelkova serrata. Mol Ecol Notes 5:378–380CrossRefGoogle Scholar
  23. Hagen LS, Chaib J, Fady B, Decroocq V, bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4:742–745CrossRefGoogle Scholar
  24. Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map of apple. Heredity 85:4–11Google Scholar
  25. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte A, Georgi L, Abbott A, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map (2005). Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  26. Jaaska V (1978) NADP-dependent aromatic alcohol dehydrogenase in polyploid wheats and their diploid relatives. On the origin and phylogeny of polyploid wheats. Theor Appl Genet 53:209–217CrossRefGoogle Scholar
  27. James CM, Wilson F, Hadonou AM, Tobutt KR (2003) Isolation and characterization of polymorphic microsatellites in diploid strawberry (Fragaria vesca L.) for mapping, diversity studies and clone identification. Mol Ecol Notes 3:171–173CrossRefGoogle Scholar
  28. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Battle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041CrossRefGoogle Scholar
  29. Joobeur T, Periam N, Vicente MC, King GJ, Arus P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655PubMedCrossRefGoogle Scholar
  30. Kobayashi N, Horikoshi T, Katsuyama H, Handa T, Takayanagi K (1998) A simple and efficient DNA extraction method for plants, especially woody plants. Plant Cell Tiss Org Cult 4:76–80Google Scholar
  31. Lee S, Wen J (2001) A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. Amer J Botany 88:150–160CrossRefGoogle Scholar
  32. Lopes MS, Sefc KM, Laimer M, Da Camaro Machado A (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2:24–26CrossRefGoogle Scholar
  33. Messina R, Lain O, Marrazzo T, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  34. Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arus P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166CrossRefGoogle Scholar
  35. Mnejja M, Garcia-Mas J, Howad W, Arus P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5:531–535CrossRefGoogle Scholar
  36. Pashkoulov DT, Tobutt KR, Bošković R (2000) Comparison of isoenzymes in Prunus avium separated by two different electrophoretic techniques. Plant Breeding 119:153–156CrossRefGoogle Scholar
  37. Santi F, Lemoine M (1990) Genetic markers for Prunus avium L.: inheritance and linkage of isoenzyme loci. Ann Forest Sci 47:131–139CrossRefGoogle Scholar
  38. Sargent DJ, Rys A, Nier S, Simpson DW, Tobutt KR (2007) The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor Appl Genet 114:373–384PubMedCrossRefGoogle Scholar
  39. Schuster M, Tobutt KR (2004) Screening of cherries for resistance to leaf spot, Blumeriella jaapii. Acta Hort 663:239–243Google Scholar
  40. Sonneveld T, Robbins TP, Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307CrossRefGoogle Scholar
  41. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  42. Struss D, Boritzki M, Karle R, Iezzoni AF (2002) Microsatellite markers differentiate eight Giessen cherry rootstocks. HortScience 37:191–193Google Scholar
  43. Struss D, Ahmad R, Southwick SM (2003) Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J Amer Soc Hort Sci 128:904–909Google Scholar
  44. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520PubMedCrossRefGoogle Scholar
  45. Testolin R, Messina R, Lain O, Marrazzo MT, Huang W-G, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461CrossRefGoogle Scholar
  46. Tobutt KR (1985) New approaches to breeding sweet cherry scion varieties at East Malling with particular reference to small tree size. Acta Hort 160:43–50Google Scholar
  47. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0: software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  48. Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431CrossRefGoogle Scholar
  49. Verde I, Lauria M, Dettori M, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica [L. (Batsch)] x P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013–1021PubMedCrossRefGoogle Scholar
  50. Viruel MA, Messeguer R, de Vicente MC, Garcia-Mas J, Puigdomènech P, Vargas F, Arus P (1995) A linkage map with RFLP and isoenzyme markers for almond. Theor Appl Genet 91:964–971CrossRefGoogle Scholar
  51. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  52. Wendel JF, Weeden NF (1989) Visualisation and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides, Oregon, pp 5–45Google Scholar
  53. Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach [Prunus persica (L.) Batsch] derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2:298–301CrossRefGoogle Scholar
  54. Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japan Soc Hort Sci 74:204–213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. B. Clarke
    • 1
  • D. J. Sargent
    • 1
  • R. I. Bošković
    • 1
    • 2
  • A. Belaj
    • 1
    • 3
  • K. R. Tobutt
    • 1
  1. 1.East Malling Research (EMR)KentUK
  2. 2.Imperial College at WyeAshfordUK
  3. 3.Centro “Alameda del Obispo”, IFAPACórdobaSpain

Personalised recommendations