Tree Genetics & Genomes

, Volume 4, Issue 4, pp 745–756

A framework physical map for peach, a model Rosaceae species

  • T. N. Zhebentyayeva
  • G. Swire-Clark
  • L. L. Georgi
  • L. Garay
  • S. Jung
  • S. Forrest
  • A. V. Blenda
  • B. Blackmon
  • J. Mook
  • R. Horn
  • W. Howad
  • P. Arús
  • D. Main
  • J. P. Tomkins
  • B. Sosinski
  • W. V. Baird
  • G. L. Reighard
  • A. G. Abbott
Original Paper

Abstract

A genome-wide framework physical map of peach was constructed using high-information content fingerprinting (HICF) and FPC software. The resulting HICF assembly contained 2,138 contigs composed of 15,655 clones (4.3× peach genome equivalents) from two complementary bacterial artificial chromosome libraries. The total physical length of all contigs is estimated at 303 Mb or 104.5% of the peach genome. The framework physical map is anchored on the Prunus genetic reference map and integrated with the peach transcriptome map. The physical length of anchored contigs is estimated at 45.0 Mb or 15.5% of the genome. Altogether, 2,636 markers, i.e., genetic markers, peach unigene expressed sequence tags, and gene-specific and overgo probes, were incorporated into the physical framework and supported the accuracy of contig assembly.

Keywords

Prunus persica HICF fingerprinting BAC-based physical/genetic map 

Supplementary material

11295_2008_147_MOESM1_ESM.doc (223 kb)
Table 1List of genetic markers integrated into peach HICF physical map (DOC 223 KB).

References

  1. Abbott AG, Georgi L, Inigo M, Sosinski B, Yvergniaux D, Wang Y, Blenda A, Reighard G (2002) Peach: the model genome for Rosaceae. Acta Hort 575:145–155Google Scholar
  2. Abbott AG, Arús P, Scorza R (2006) Peach. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 137–156Google Scholar
  3. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  4. Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. In: Janick J (ed) Plant Breeding Reviews vol. 27. Wiley, Hoboken, pp 175–211Google Scholar
  5. Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119:1312–1316Google Scholar
  6. Barillot E, Dausset J, Cohen D (1991) Theoretical analysis of a physical mapping strategy using random single-copy landmarks. Proc Natl Acad Sci USA 88:3917–3921PubMedCrossRefGoogle Scholar
  7. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523PubMedCrossRefGoogle Scholar
  8. Chen M, Presting G, Barbazuk W, Goicoechea J, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Sun S, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N, Tyagi A, Soderlund C, Dean R, Wing R (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545PubMedCrossRefGoogle Scholar
  9. Cone KC, McMullen MD, Bi IV, Davis GL, Yim Y, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605PubMedCrossRefGoogle Scholar
  10. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896PubMedCrossRefGoogle Scholar
  11. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes 3:1–13CrossRefGoogle Scholar
  12. Draye X, Lin YR, Qian XY, Bowers JE, Burow GB, Morrell PL, Peterson DG, Presting GG, Ren SX, Wing RA, Paterson AH (2001) Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol 125:1325–1341PubMedCrossRefGoogle Scholar
  13. Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) as clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484CrossRefGoogle Scholar
  14. Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Inigo M, Reighard GL, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158PubMedCrossRefGoogle Scholar
  15. Gladkova VN (1972) On the origin of subfamily Maloideae. Bot Zhurnal 57:42–49 (in Russian)Google Scholar
  16. Goodman HM, Ecker JR, Dean C (1995) The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA 92:10831–10835PubMedCrossRefGoogle Scholar
  17. Green ED (2001) Strategies for the systematic sequencing of complex genomes. Natl Rev Genet 2:573–583CrossRefGoogle Scholar
  18. Han J, Gasić K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637PubMedCrossRefGoogle Scholar
  19. Hoskins RA, Nelson CR, Berman BP, Laverty TR, George L, Ciesiolka L, Naemuddin M, Arenson AD, Durbin J, David RG, Tabor PE, Bailey MR, DeShazo DR, Catanese J, Mammoser A, Osoegawa K, de Jong PE, Celniker SE, Gibbs RA, Rubin GM, Scherer SE (2000) BAC-based physical map of the major autosomes of Drosophila melanogaster. Science 287:2271–2274PubMedCrossRefGoogle Scholar
  20. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309PubMedCrossRefGoogle Scholar
  21. Horn R, Lecouls A-C, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Ramaswamy K, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva TN, Yu Y, Kim HR, Jesudurai C, Sosinski BA, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428PubMedCrossRefGoogle Scholar
  22. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041CrossRefGoogle Scholar
  23. Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5:130PubMedCrossRefGoogle Scholar
  24. Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81PubMedCrossRefGoogle Scholar
  25. Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807PubMedCrossRefGoogle Scholar
  26. Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513PubMedCrossRefGoogle Scholar
  27. Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389PubMedCrossRefGoogle Scholar
  28. Marra M, Kukaba T, Sekhon T, Hillier L, Martiensen R, Chinwalla A, Crokett J, Fedele J, Grover H, Gund G, McCombie WR, McDonald K, McPherson J, Mudd N, Parnell L, Schein J, Seim R, Shelby P, Waterson R, Wilson R (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nature Genet 22:269–270CrossRefGoogle Scholar
  29. Meyers BC, Scalabrin S, Morgante M (2004) Mapping and sequencing complex genomes: let’s get physical. Nat Rev Genet 5:578–588PubMedCrossRefGoogle Scholar
  30. Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 3:271–275Google Scholar
  31. Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim HR, Wing RA, Messing J, Soderlund K (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38PubMedCrossRefGoogle Scholar
  32. Nelson WM, Soderlund C (2005) Software for restriction fragment physical maps. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping: genetic and physical mapping. Wiley-VCH, Weinheim, pp 285–306CrossRefGoogle Scholar
  33. Nelson WM, Dvorak J, Luo MC, Messing J, Wing RA, Soderlund C (2007) Efficacy of clone fingerprinting methodologies. Genomics 89:160–165PubMedCrossRefGoogle Scholar
  34. Potter D (2003) Molecular phylogenetic studies in Rosaceae. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol. 1, part A. Science Publishers, Enfield, pp 319–351Google Scholar
  35. Quiniou SM-A, Waldbieser GC, Duke MV (2007) A first generation BAC-based physical map of the channel catfish genome. BMC Genomics 8:40PubMedCrossRefGoogle Scholar
  36. Ren C, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, Zhang HB (2003) A BAC-based physical map of the chicken genome. Genome Res 13:2754–2758PubMedCrossRefGoogle Scholar
  37. Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breeding 126:310–319CrossRefGoogle Scholar
  38. Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. CABIOS 13:523–535PubMedGoogle Scholar
  39. Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprint, markers, and FPC V4.7. Genome Res 10:1772–1778PubMedCrossRefGoogle Scholar
  40. Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, Columbia, p 643Google Scholar
  41. Tao Q, Chang Y-L, Wang J, Chena H, Islam-Faridi MN, Scheuring C, Wang B, Stelly DM, Hong-Bin Zhang H-B (2001) Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158:1711–1724PubMedGoogle Scholar
  42. Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang H-B (2004) A BAC- and BIBAC-based physical map of the soybean genome. Genome Res 14:319–326PubMedCrossRefGoogle Scholar
  43. Xu Z, Sun S, Covaleda L, Ding K, Zhang A, Wu C, Scheuring C, Zhang HB (2004) Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. Genomics 84:941–951PubMedCrossRefGoogle Scholar
  44. Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696PubMedCrossRefGoogle Scholar
  45. You FM, Luo M-C, Gu YQ, Lazo GR, Deal K, Dvorak J, Anderson OD (2007) GenoProfiler: batch processing of high throughput capillary fingerprinting data. Bioinformatics 23:240–242PubMedCrossRefGoogle Scholar
  46. Zhang HB, Wing RA (1997) Physical mapping of the rice genome with BACs. Plant Mol Biol 35:115–127PubMedCrossRefGoogle Scholar
  47. Zhang HB, Wu C (2001) BAC as tools for genome sequencing. Plant Physiol Biochem 39:195–209CrossRefGoogle Scholar
  48. Zhebentyayeva TN, Horn R, Mook J, Lecouls A-C, Georgi L, Swire-Clark G, Reighard GL, Baird WV, Abbott AG (2006) A physical framework for the peach genome. Acta Hort 713:83–88Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • T. N. Zhebentyayeva
    • 1
  • G. Swire-Clark
    • 2
  • L. L. Georgi
    • 1
  • L. Garay
    • 1
  • S. Jung
    • 4
  • S. Forrest
    • 1
  • A. V. Blenda
    • 1
  • B. Blackmon
    • 3
  • J. Mook
    • 1
    • 7
  • R. Horn
    • 1
    • 8
  • W. Howad
    • 5
  • P. Arús
    • 5
  • D. Main
    • 4
  • J. P. Tomkins
    • 3
  • B. Sosinski
    • 6
  • W. V. Baird
    • 2
  • G. L. Reighard
    • 2
  • A. G. Abbott
    • 1
  1. 1.Department of Genetics and BiochemistryClemson UniversityClemsonUSA
  2. 2.Department of HorticultureClemson UniversityClemsonUSA
  3. 3.Clemson University Genomics InstituteClemson UniversityClemsonUSA
  4. 4.Department of Horticulture and Landscape ArchitectureWashington State UniversityPullmanUSA
  5. 5.Centre de Recerca en Agrigenòmica CSIC–IRTA–UABBarcelonaSpain
  6. 6.Department of Horticultural SciencesNorth Carolina State UniversityRaleighUSA
  7. 7.Agricultural Research ProgramsVirginia State UniversityPetersburgUSA
  8. 8.Abt Pflanzengenetik, Institut für BiowissenschaftenUniversität RostockRostockGermany

Personalised recommendations