Tree Genetics & Genomes

, Volume 4, Issue 4, pp 727–743

Construction of an integrated consensus map of the apple genome based on four mapping populations

  • A. N’Diaye
  • W. E. Van de Weg
  • L. P. Kodde
  • B. Koller
  • F. Dunemann
  • M. Thiermann
  • S. Tartarini
  • F. Gennari
  • C. E. Durel
Original Paper

Abstract

An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1 = Discovery × TN10-8, C2 = Fiesta × Discovery, C3 = Discovery × Prima, C4 = Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female–male maps were built for each population using common female–male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (χ2 = 16.53, df = 16, p = 0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female–male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression.

Keywords

Malus × domestica Borkh. Integrated consensus genetic map Female–male map SSR marker 

References

  1. Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet 82(5):636–644CrossRefGoogle Scholar
  2. Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci U S A 101(3):886–890PubMedCrossRefGoogle Scholar
  3. Black WC (1993) PCR with arbitrary primers: approach with care. Insect Mol Biol 2(1):1–6PubMedCrossRefGoogle Scholar
  4. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113(2):206–224PubMedCrossRefGoogle Scholar
  5. Bus VGM, Rikkerink EHA, Van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Mol Breed 15(1):103–116CrossRefGoogle Scholar
  6. Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379CrossRefPubMedGoogle Scholar
  7. Causse M, Sansavini S, Damerval C, Maurice A, Charcosset A, Deatrick J, de Vienne D (1996) A composite map of expressed sequences in maize. Genome 39:418–432PubMedCrossRefGoogle Scholar
  8. Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH, Hostyn V, Van Slycken J, Van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158(2):787–809PubMedGoogle Scholar
  9. Cheng FS, Weeden NF, Brown SK (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93(1):222–227CrossRefGoogle Scholar
  10. Chevreau E, Manganaris AG, Gallet M (1999) Isozyme segregation in five apple progenies and potential use for map construction. Theor Appl Genet 98(2):329–336CrossRefGoogle Scholar
  11. Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96(8):1027–1035CrossRefGoogle Scholar
  12. Costa F, Stella S, Sansavini S, Van de Weg WE (2005) Functional markers as genetic approach to study ethylene production and fruit softening in apple (Malus domestica Borkh.). Acta Hort (ISHS) 682:389–394Google Scholar
  13. Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39(5):1464–1490CrossRefGoogle Scholar
  14. Daryl JS, Peter I, Keith E (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114CrossRefGoogle Scholar
  15. Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142(1):343–351PubMedCrossRefGoogle Scholar
  16. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21(8):1703–1704PubMedCrossRefGoogle Scholar
  17. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101(26):9891–9896PubMedCrossRefGoogle Scholar
  18. Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113(3):369–382PubMedCrossRefGoogle Scholar
  19. Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46(2):224–234PubMedCrossRefGoogle Scholar
  20. Fatmi A, Poneleit CG, Pfeiffer TW (1993) Variability of recombination frequencies in the Iowa Stiff Stalk Synthetic (Zea mays L.). Theor Appl Genet 86(7):859–866CrossRefGoogle Scholar
  21. Fernandez-Fernandez F, Evans KM, Clarke JB, Govan CL, James CM, Maric S, Tobutt KR (2008) Development of an STS map of an interspecific progeny of Malus. Tree Genet Gen. DOI 10.1007/s11295-007-0124-y
  22. Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet 93(4):485–493CrossRefGoogle Scholar
  23. Gentzbittel L, Mestries E, Mouzeyar S, Mazeyrat F, Badaoui S, Vear F, Tourvieille de Labrouhe D, Nicolas P (1999) A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 99(1):218–234CrossRefGoogle Scholar
  24. Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93(1):199–204CrossRefGoogle Scholar
  25. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137(4):1121–1137PubMedGoogle Scholar
  26. Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109(8):1702–1709PubMedCrossRefGoogle Scholar
  27. Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85(1):4–11PubMedGoogle Scholar
  28. Hemmat M, Brown SK, Aldwinckle HS, Mehlenbacher SA, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen's baccata #2’¢. Acta Hort 622:153–161Google Scholar
  29. Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus domestica Borkh.) by QTL analysis of growth traits. Molecular Breeding 19(3):193–208CrossRefGoogle Scholar
  30. King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100(7):1074–1084CrossRefGoogle Scholar
  31. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eug 12:172–175Google Scholar
  32. Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14(4):421–429PubMedCrossRefGoogle Scholar
  33. Lenormand T, Dutheil J (2005) Recombination difference between sexes: a role for haploid selection. PLoS Biology 3(3):e63PubMedCrossRefGoogle Scholar
  34. Lespinasse Y, Durel CE, Parisi L, Laurens F, Chevalier M, Pinet C (2000a) A European project D.A.R.E.—Durable resistance of apple to scab and powdery-mildew. Acta Hort 538:197–200Google Scholar
  35. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000b) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100(1):127–138CrossRefGoogle Scholar
  36. Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169(3):1699–1709PubMedCrossRefGoogle Scholar
  37. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg WE, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus domestica Borkh.). Molecular Breeding 10(4):217–241CrossRefGoogle Scholar
  38. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003a) Creating a saturated reference map for the apple (Malus domestica Borkh.) genome. Theor Appl Genet 106(8):1497–1508PubMedGoogle Scholar
  39. Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003b) Mapping quantitative field resistance against apple scab in a ‘Fiesta’ ‘Discovery’ progeny. Phytopathology 93:493–501CrossRefPubMedGoogle Scholar
  40. Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507CrossRefGoogle Scholar
  41. Loridon K, McPhee K, Morin J, Dubreuil P, Pilet-Nayel M, Aubert G, Rameau C, Baranger A, Coyne C, Lejeune-Hènaut I, Burstin J (2005) Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.). Theor Appl Genet 111(6):1022–1031PubMedCrossRefGoogle Scholar
  42. Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250CrossRefGoogle Scholar
  43. Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-Van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73CrossRefGoogle Scholar
  44. Myburg AA, Remington DM, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. BioTechniques 30(2):348–357PubMedGoogle Scholar
  45. Nicolas SD, Mignon GL, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chevre AM, Jenczewski E (2007) Homologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus Haploids. Genetics 175(2):487–503PubMedCrossRefGoogle Scholar
  46. Pan Q, Liu Y-S, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155(1):309–322PubMedGoogle Scholar
  47. Pelgas B, Beauseigle S, Acheré V, Jeandroz S, Bousquet J, Isabel N (2006) Comparative genome mapping among Picea glauca, P. mariana × P. rubens and P. abies, and correspondence with other Pinaceae. Theor Appl Genet 113(8):1371–1393PubMedCrossRefGoogle Scholar
  48. Radhika P, Gowda S, Kadoo N, Mhase L, Jamadagni B, Sainani M, Chandra S, Gupta V (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115(2):209–216PubMedCrossRefGoogle Scholar
  49. Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor Appl Genet 86:1014–1022CrossRefGoogle Scholar
  50. Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C, King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet 94(3):528–533CrossRefGoogle Scholar
  51. Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005) An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110(2):323–336PubMedCrossRefGoogle Scholar
  52. Segura V, Denance C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171PubMedCrossRefGoogle Scholar
  53. Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151(1):321–330PubMedGoogle Scholar
  54. Silfverberg-Dilworth E, Matasci C, Van de Weg WE, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus domestica Borkh.) genome. Tree Genetics & Genomes 2(4):202–224CrossRefGoogle Scholar
  55. Song Q, Marek L, Shoemaker R, Lark K, Concibido V, Delannay X, Specht J, Cregan P (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109(1):122–128PubMedCrossRefGoogle Scholar
  56. Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169(3):1649–1658PubMedCrossRefGoogle Scholar
  57. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132(4):1141–1160PubMedGoogle Scholar
  58. Thiermann M (2002) Molekulare charakterisierung dauerhafter, polygen vererbter resistenzquellen für apfelschorf und apfelmehltau, Dissertation Univ. Bremen.Google Scholar
  59. Truco M, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort S, Jeuken M, Kesseli R, Lindhout P, Michelmore R, Peleman J (2007) A high-density, integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115(6):735–746PubMedCrossRefGoogle Scholar
  60. Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegragating with Vf apple scab resistance. Mol Plant-Microbe Interactions 14:508–514CrossRefGoogle Scholar
  61. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedCrossRefGoogle Scholar
  62. Vos P, Hogers R, Bleeker M, Reijans M, Lee Tvd, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23(21):4407–4414PubMedCrossRefGoogle Scholar
  63. Walling GA, Visscher PM, Andersson L, Rothschild MF, Wang L, Moser G, Groenen MAM, Bidanel J-P, Cepica S, Archibald AL, Geldermann H, de Koning DJ, Milan D, Haley CS (2000) Combined analyses of data from quantitative trait loci mapping studies: chromosome 4 effects on porcine growth and fatness. Genetics 155(3):1369–1378PubMedGoogle Scholar
  64. Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet MGG 255(3):311–321CrossRefGoogle Scholar
  65. Xu M, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162(4):1995–2006PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. N’Diaye
    • 1
  • W. E. Van de Weg
    • 2
  • L. P. Kodde
    • 2
  • B. Koller
    • 3
  • F. Dunemann
    • 4
  • M. Thiermann
    • 4
  • S. Tartarini
    • 5
  • F. Gennari
    • 5
  • C. E. Durel
    • 1
  1. 1.UMR1259 Génétique et Horticulture (GenHort), INRABeaucouzéFrance
  2. 2.Department of Plant BreedingWageningen University and Research Centre, Plant Research InternationalWageningenThe Netherlands
  3. 3.Ecogenics GmbHZurich-SchlierenSwitzerland
  4. 4.Bundesanstalt für Züchtungsforschung an Kulturpflanzen, Institut für ObstzüchtungDresdenGermany
  5. 5.Department of Fruit Tree and Woody Plant ScienceUniversity of BolognaBolognaItaly

Personalised recommendations