Tree Genetics & Genomes

, Volume 4, Issue 3, pp 495–507 | Cite as

Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation

  • Douglas Gary Bielenberg
  • Ying (Eileen) Wang
  • Zhigang Li
  • Tetyana Zhebentyayeva
  • Shenghua Fan
  • Gregory Lynn Reighard
  • Ralph Scorza
  • Albert Glenn Abbott
Original Paper

Abstract

Buds are specialized structures that protect fragile meristematic regions during dormancy and are part of the mechanism that plants use to survive unfavorable environmental conditions such as low temperature or dessication stress. The evergrowing (evg) mutant of peach [Prunus persica (L.) Batsch] does not form terminal vegetative buds in response to dormancy-inducing conditions such as short days and low temperatures, and the terminal meristems maintain constant growth (leaf addition and internode elongation). We genetically mapped the evg trait and identified the corresponding genomic region in a wild-type genome. We sequenced and annotated the 132-kb region. Nineteen genes were predicted to be in the sequenced region. Ten of the predicted genes were demonstrated to be expressed in the wild-type germplasm but six of these were not expressed in mutant tissues. These six genes are a cluster of MIKC-type MADS-box transcription factors similar to genes from Ipomoea batatas and Solanum tuberosum MADS-box, which also regulate meristem growth in vegetative tissues. A 41,746-bp deletion is present in this region of the mutant genome which results in the loss of all or part of four of the six MADS-box genes. The six MADS-box genes that are not expressed in the mutant are candidates for the regulation of growth cessation and terminal bud formation in peach in response to dormancy-inducing conditions and have been named dormancy-associated MADS-box (DAM) genes.

Keywords

MADS-box Bud Dormancy Evergrowing Peach 

Notes

Acknowledgements

The authors would like to thank Dr. M. Staton for valuable assistance with the bioinformatics and Dr. W.V. Baird for valuable comments on the manuscript.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466PubMedCrossRefGoogle Scholar
  3. Anderson JV, Chao WS, Horvath DP (2001) A current review on the regulation of dormancy in vegetative buds. Weed Sci 49:581–589CrossRefGoogle Scholar
  4. Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28:1567–1578CrossRefGoogle Scholar
  5. Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92CrossRefGoogle Scholar
  6. Aswath CR, Mo SY, Kim SH, Kim DH (2004) IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura). Plant Sci 166:847–854CrossRefGoogle Scholar
  7. Barak S, Tobin EM, Andronis C, Sugano S, Green RM (2000) All in good time: the Arabidopsis circadian clock. Trends Plant Sci 5:517–522PubMedCrossRefGoogle Scholar
  8. Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454PubMedCrossRefGoogle Scholar
  9. Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Heredity 95:436–444CrossRefGoogle Scholar
  10. Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  11. Brill EM, Watson JM (2004) Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Funct Plant Biol 3::217–224CrossRefGoogle Scholar
  12. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94PubMedCrossRefGoogle Scholar
  13. Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126:205–209Google Scholar
  14. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  15. Dennis FG (1996) A physiological compasion of seed and bud dormancy. In: Lang GA (ed) Plant Dormancy: Physiology, Biochemistry, and Molecular Biology. CAB, New York, pp 47–56Google Scholar
  16. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138PubMedCrossRefGoogle Scholar
  17. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Nat Acad Sci USA 101:9891–9896PubMedCrossRefGoogle Scholar
  18. Duarte JM, Cui LY, Wall PK, Zhang Q, Zhang XH, Leebens-Mack J, Ma H, Altman N, dePamphilis CW (2006) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23:469–478PubMedCrossRefGoogle Scholar
  19. Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. Hortscience 32:623–629Google Scholar
  20. Fuchigami LH, Wisniewski M (1997) Quantifying bud dormancy: physiological approaches. Hortscience 32:618–623Google Scholar
  21. Garcia-Maroto F, Carmona MJ, Garrido JA, Vilches-Ferron M, Rodriguez-Ruiz J, Alonso DL (2003) New roles for MADS-box genes in higher plants. Biologia Plantarum 46:321–330CrossRefGoogle Scholar
  22. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach Prunus persica (L.) Batsch. Theor Appl Genet 105:1151–1158PubMedCrossRefGoogle Scholar
  23. Gevaudant F, Samson I, Guilliot A, Petel G (1999) An improved method for isolating polyphenol-free RNA from woody plant tissues. J Trace Microprobe Tech 17:445–450Google Scholar
  24. Gevaudant F, Petel G, Guilliot A (2001) Differential expression of four members of the H + -ATPase gene family during dormancy of vegetative buds of peach trees. Planta 212:619–626PubMedCrossRefGoogle Scholar
  25. Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nature Genet 3:266–272PubMedCrossRefGoogle Scholar
  26. Horn R (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428PubMedCrossRefGoogle Scholar
  27. Horvath DP, Anderson JV (2002) A molecular approach to understanding root bud dormancy in leafy spurge. Weed Sci 50:227–231CrossRefGoogle Scholar
  28. Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540PubMedCrossRefGoogle Scholar
  29. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond x peach F-2 progeny. Theor Appl Genet 97:1034–1041CrossRefGoogle Scholar
  30. Jung S, Jesudurai C, Staton M, Du ZD, Ficklin S, Cho IH, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5: Art. No. 130Google Scholar
  31. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110::462–467CrossRefGoogle Scholar
  32. Klee H, Estelle M (1991) Molecular genetic approaches to plant hormone biology. Ann Rev Plant Physiol Plant Mol Biol 42:529–551CrossRefGoogle Scholar
  33. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36PubMedCrossRefGoogle Scholar
  34. Kovarík A, Matzke MA, Matzke AJM, Koukalová B (2001) Transposition of IS10 from the host Escherichia coli genome to a plasmid may lead to cloning artefacts. Mol Genet Genom 266:216–222CrossRefGoogle Scholar
  35. Kozlowski TT, Pallardy SG (1997) In: Physiology of woody plants. 2nd edn. Academic, San DiegoGoogle Scholar
  36. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532PubMedCrossRefGoogle Scholar
  37. Lawton-Rauh A (2003) Evolutionary dynamics of duplicated genes in plants. Mol Phylogenet Evol 29:396–409PubMedCrossRefGoogle Scholar
  38. Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20:2878–2879PubMedCrossRefGoogle Scholar
  39. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  40. Michaels SD, Amasino RM (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ 23:1145–1153CrossRefGoogle Scholar
  41. Molmann JA, Berhanu AT, Stormo SK, Ernstsen A, Junttila O, Olsen JE (2003) Metabolism of gibberellin A(19) is under photoperiodic control in Populus, Salix and Betula, but not in daylength-insensitive Populus overexpressing phytochrome A. Physiologia Plantarum 119:278–286CrossRefGoogle Scholar
  42. Molmann JA, Asante DKA, Jensen JB, Krane MN, Ernstsen A, Junttila O, Olsen JE (2005) Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation, but not dormancy in PHYA overexpressors and wild-type of hybrid aspen. Plant Cell Environ 28:1579–1588CrossRefGoogle Scholar
  43. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128PubMedCrossRefGoogle Scholar
  44. Moore RC, Grant SR, Purugganan MD (2005) Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana. Mol Biol Evol 22:91–103PubMedCrossRefGoogle Scholar
  45. Olsen JE (2003) Molecular and Physiological Mechanisms of Bud Dormancy Regulation. In: Tanino KK et al (ed) XXVI International Horticultural Congress-Environmental Stress, Vol 618. ISHS, Leuven, pp 437–453Google Scholar
  46. Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551PubMedCrossRefGoogle Scholar
  47. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21–31CrossRefGoogle Scholar
  48. Prakash AP, Kumar PP (2002) PkMADS1 is a novel MADS box gene regulating adventitious shoot induction and vegetative shoot development in Paulownia kawakamii. Plant J 29:141–151PubMedCrossRefGoogle Scholar
  49. Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414PubMedCrossRefGoogle Scholar
  50. Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis MADS affecting flowering gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15:1159–1169PubMedCrossRefGoogle Scholar
  51. Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) Evergreen peach, its inheritance and dormant behavior. J Am Soc Hortic Sci 119:789–792Google Scholar
  52. Rohde A, Bhalerao RP (2007) Plant dormancy in a perennial context. Trends Plant Sci 12:217–223PubMedCrossRefGoogle Scholar
  53. Rohde A, Howe GT, Olsen JE, Moritz T, Van Montagu M, Junttila O, Boerjan W (2000) Molecular aspects of bud dormancy in trees. In: Jain SM, Minocha SC (eds) Molecular Biology of Woody Plants, Vol 1. Kluwer, Dordrecht, pp 89–134Google Scholar
  54. Rowland LJ, Ogden EL, Arora R, Lim CC, Lehman JS, Levi A, Panta GR (1999) Use of blueberry to study genetic control of chilling requirement and cold hardiness in woody perennials. Hortscience 34:1185–1191Google Scholar
  55. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana, Totowa, pp 365–386Google Scholar
  56. Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjarvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640PubMedCrossRefGoogle Scholar
  57. Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522PubMedCrossRefGoogle Scholar
  58. Sambrook J, Russell DW (2002) In: Molecular cloning: a laboratory manual Vol 2. 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  59. Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit Breeding, Vol 1 Tree and tropical fruits. Wiley, New York, pp 325–440Google Scholar
  60. Theissen G, Strater T, Fischer A, Saedler H (1995) Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of agamous-like MADS-box genes from maize. Gene 156:155–166PubMedCrossRefGoogle Scholar
  61. Thompson MM, Smith DC, Burgess JE (1985) Non-dormant mutants in a temperate tree species, Corylus avellana L. Theor Appl Genet 70:687–692CrossRefGoogle Scholar
  62. van der Linden CG, Vosman B, Smulders MJM (2002) Cloning and characterization of four apple MADS-box genes isolated from vegetative tissue. J Exp Bot 53:1025–1036PubMedCrossRefGoogle Scholar
  63. Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research, WageningenGoogle Scholar
  64. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296:343–346PubMedCrossRefGoogle Scholar
  65. Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002a) Genetic mapping of the evergrowing gene in peach Prunus persica (L.) Batsch. J Heredity 93:352–358CrossRefGoogle Scholar
  66. Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002b) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45:319–328PubMedCrossRefGoogle Scholar
  67. Werner DJ, Okie WR (1998) A history and description of the Prunus persica plant introduction collection. Hortscience 33:787–793Google Scholar
  68. Yang ZN, Ye XR, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the Citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiology 131:482–492CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Douglas Gary Bielenberg
    • 1
  • Ying (Eileen) Wang
    • 2
  • Zhigang Li
    • 1
  • Tetyana Zhebentyayeva
    • 2
  • Shenghua Fan
    • 2
  • Gregory Lynn Reighard
    • 1
  • Ralph Scorza
    • 3
  • Albert Glenn Abbott
    • 2
  1. 1.Department of HorticultureClemson UniversityClemsonUSA
  2. 2.Department of Genetics & BiochemistryClemson UniversityClemsonUSA
  3. 3.Appalachian Fruit Research StationUSDA-ARSKearneysvilleUSA

Personalised recommendations