Tree Genetics & Genomes

, Volume 4, Issue 3, pp 367–377

High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna revealed by paternity analysis using microsatellites

Original Paper

Abstract

The mating system, patterns of pollen mediated gene flow and levels of genetic contamination were investigated in a planted stand of Acacia saligna subsp. saligna via paternity analysis using microsatellite markers. High levels of outcrossing were detected within the stand (tm = 0.98), and the average pollen dispersal distance was 37 m with the majority of progeny sired by paternal trees within a 50-m neighbourhood of the maternal tree. Genetic contamination from the natural background population of A. saligna subsp. lindleyi was detected in 14% of the progeny of A. saligna subsp. saligna and varied among maternal trees. Long distance inter-subspecific pollen dispersal was detected for distances of over 1,500 m. The results provide information for use in the breeding and domestication programme aimed at developing A. saligna as an agroforestry crop for the low rainfall areas of southern Australia.

Keywords

Microsatellite Mating system Pollen dispersal Male mating success Paternity analysis Acacia saligna 

References

  1. Adams W, Burczyk J (2000) Magnitude and implications of gene flow in gene conservation reserves. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice. CSIRO, Collingwood, Victoria, pp 215–226Google Scholar
  2. Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus Excelsior L. Evolution 59:979–990PubMedGoogle Scholar
  3. Bartle J, Cooper D, Olsen G, Carslake J (2002) Acacia species as large-scale crop plants in the Western Australian Wheatbelt. Conserv Sci W Aust 4:96–108Google Scholar
  4. Butcher P, Decroocq S, Gray Y, Moran G (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet 101:1282–1290CrossRefGoogle Scholar
  5. Byrne M, Millar MA (2004) Genetic systems and issues in the development of woody perennials for revegetation. In: Ridley A, Feikma P, Bennet S, Ropgers MJ, Wilkinson R, Hirth J (eds) Proceedings of the conference salinity solutions: working with science and society, Bendigo, Victoria, 2–5 August 2004. pp 1–54Google Scholar
  6. Byrne M, Moran G, Tibbits W (1993) Restriction map and maternal inheritance of chloroplast DNA in Eucalyptus nitens. Heredity 84:218–220Google Scholar
  7. Byrne M, Macdonald B, Francki M (2001) Incorporation of sodium sulfite into extraction protocol minimizes degradation of Acacia DNA. BioTechniques 30:742–748PubMedGoogle Scholar
  8. Byrne M, Elliott CP, Yates C, Coates DJ (2007) Maintenance of high pollen dispersal in Eucalyptus wandoo, a dominant tree of the fragmented agricultural region in Western Australia. Conserv Genet, doi:10.1007/s10592-007-9311-5
  9. Coates D, Tischler G, McComb JA (2006) Genetic variation and the mating system in the rare Acacia sciophanes compared with its common sister species Acacia anfractuosa (Mimosaceae). Conserv Genet 7:931–944CrossRefGoogle Scholar
  10. Crompton H (1992) Acacia saligna—for dryland fodder and soil stabilisation. NFT Highlights, Nitrogen Fixing Tree Association, Waimanalo, HIGoogle Scholar
  11. Devlin B, Ellstrand NC (1990) The development and application of refined methods for estimating gene flow from angiosperm paternity analysis. Evolution 44:248–259CrossRefGoogle Scholar
  12. Dick C (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc Lond B Biol Sci 268:2391–2396CrossRefGoogle Scholar
  13. Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  14. El-Kassaby Y (2000) Effect of forest tree domestication on gene pools. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice. CSIRO, Collingwood, Victoria, pp 197–213Google Scholar
  15. Ellstrand N (1992) Gene flow among seed plant populations. New For 6:241–246Google Scholar
  16. Engels W (1993) Contributing software to the Internet: the Amplify program. Trends Biochem Sci 18:448–450PubMedCrossRefGoogle Scholar
  17. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  18. Fox JED (1995) A review of the ecological characteristics of Acacia saligna (Labill.) H.Wendl. Mulga Res Cent J 12:65–71Google Scholar
  19. Friedman S, Adams W (1985) Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theor Appl Genet 69:609–615CrossRefGoogle Scholar
  20. George N (2005) Koojong (Acacia saligna), a species with potential as a perennial forage for dryland salinity management—genetic variation, feed quality and reproductive biology. Ph.D. thesis, University of Western AustraliaGoogle Scholar
  21. Gerber S, Chabrier P, Kremer A (2003) FAMOZ: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol Ecol Notes 3:479–481CrossRefGoogle Scholar
  22. Hobbs T, Bennell M, Huxtable D, Bartle J, Neumann C, George N, O’Sullivan W (2006) FloraSearch Species Profiles – Low rainfall farm forestry options for southern Australia. RIRDC Report, Rural Industries Research and Development, AdelaideGoogle Scholar
  23. Kang K, Lindgren D, Mullion T (2001) Prediction of genetic gain and gene diversity in seed orchard crops under alternative management strategies. Theor Appl Genet 103:1099–1107CrossRefGoogle Scholar
  24. Kenrick J, Knox B (1982) Function of the polyad in reproduction of Acacia. Ann Bot (Lond) 50:721–727Google Scholar
  25. Kenrick J, Knox B (1989) Quantitative analysis of self incompatibility in trees of seven species of Acacia. J Hered 80:240–245Google Scholar
  26. Marshall T, Slate J, Kruuk L, Pemberton J (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  27. Maslin B (2001) Acacia. In: Orchard AE, Wilson AJG (eds) Flora of Australia: Mimosaceae, Acacia part 1. 11B. ABRS/CSIRO, Melbourne, pp 3–13Google Scholar
  28. Midgley SJ, Turnbull JW (2003) Domestication and use of Australian acacias: case studies of five important species. Aust Syst Bot 16:89–102CrossRefGoogle Scholar
  29. Moran G, Muona O, Bell J (1989) Breeding systems and genetic diversity in Acacia auriculiformis and A. crassicarpa. Biotropica 21:250–256CrossRefGoogle Scholar
  30. Muona O, Moran G, Bell J (1991) Hierarchical patterns of correlated mating in Acacia melanoxylon. Genetics 127:619–626PubMedGoogle Scholar
  31. Nason J, Hamrick J (1997) Reproductive and genetic consequences of forest fragmentation: two case studies of neotropical canopy trees. J Hered 88:264–276Google Scholar
  32. Ng C, Koh S, Lee S, Ng K, Mark A, Norwati M, Wickneswari R (2005) Isolation of 15 polymorphic microsatellite loci in Acacia hybrid (Acacia mangium x Acacia auriculiformis). Mol Ecol Notes 5:572–575CrossRefGoogle Scholar
  33. Olsen G, Cooper D, Carslake J, Huxtable D, Bartle J (2004) Search Project Report. Final report for NHT Project 973849, National Heritage Trust, Western Australian Department of Conservation and Land Management, Perth Western AustraliaGoogle Scholar
  34. Ritland K (1989) Correlated mating in the partial selfer, Mimulus guttatus. Evolution 43:848–859CrossRefGoogle Scholar
  35. Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228PubMedCrossRefGoogle Scholar
  36. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz SSM (ed) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386Google Scholar
  37. Scheltema M (1992) Direct seeding of trees and shrubs. Greening Western Australia, PerthGoogle Scholar
  38. Smouse P, Dyer R, Westfall R, Sork V (2001) Two generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271PubMedGoogle Scholar
  39. White G, Boshier D, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042PubMedCrossRefGoogle Scholar
  40. Yeh F, Boyle T (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:127Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • M. A. Millar
    • 1
    • 2
    • 3
  • M. Byrne
    • 3
    • 2
  • I. Nuberg
    • 1
    • 3
  • M. Sedgley
    • 4
  1. 1.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia
  2. 2.Department of Environment and ConservationScience DivisionBentleyAustralia
  3. 3.CRC for Plant Based Management of Dryland SalinityThe University of Western AustraliaNedlandsAustralia
  4. 4.Faculty of the Arts and SciencesThe University of New EnglandArmidaleAustralia

Personalised recommendations