Tree Genetics & Genomes

, Volume 4, Issue 2, pp 343–358 | Cite as

Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags

  • Andrew P. Gleave
  • Charles Ampomah-Dwamena
  • Susann Berthold
  • Supinya Dejnoprat
  • Sakuntala Karunairetnam
  • Bhawana Nain
  • Yen-Yi Wang
  • Ross N. Crowhurst
  • Robin M. MacDiarmid
Original Paper

Abstract

Microribonucleic acids (miRNAs) are small, non-coding RNAs that play important regulatory roles by down-regulating target transcripts in a sequence-specific manner. The miRBase Registry (Release 8.2) lists 732 miRNAs from flowering plant species, with the majority identified from Arabidopsis, rice and poplar where genome sequence is available. In the absence of genomic sequence and on the basis that sequences of many miRNAs are conserved amongst divergent plant species, we analysed approximately 120,000 Malus domestica cv. Royal Gala expressed sequence tags (ESTs) and identified ten distinct sequences that could be classified into seven conserved plant miRNA families (miR156, miR159, miR162, miR167, miR172, miR393 and miR398). Secondary structure predictions showed these sequences have the characteristic fold-back structures of precursor miRNAs, and northern analysis validated the presence of these miRNA families within Royal Gala tissues. A number of the miRNAs were expressed constitutively in all tissues tested (miR159, miR162 and miR172), while others showed more restricted patterns of expression, being expressed primarily in leaf (miR398), expressed in leaf and floral bud tissue but down-regulated during fruit development (miR156 and miR167) or expressed in fungal pathogen-infected leaf tissue (miR393). Potential targets for six of the miRNA families were identified from the EST dataset and completely sequenced complementary deoxyribonucleic acids. In general, these targets encode proteins shown to be the targets of corresponding miRNAs in other plant species. Demonstrating cleavage of a number of the putative target transcripts within the region of miRNA/messenger RNA complementarity provided further evidence of the functionality of the identified Royal Gala miRNAs.

Keywords

Malus domestica cv. Royal Gala MicroRNA Expressed sequence tag 

Abbreviations

ARF

auxin response factor

DAFB

days after full bloom

EST

expressed sequence tag

HMW

high molecular weight

LMW

low molecular weight

miRNA

microRNA

mRNA

messenger RNA

NR

non-redundant sequences

nt

nucleotide

pre-miRNA

precursor microRNA

pri-miRNA

primary microRNA

RACE

rapid amplification of cDNA ends

RISC

RNA-induced silencing complex

siRNA

short-interfering RNA

SPL

Squamosa promoter binding protein-like

UTR

untranslated region

References

  1. Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365PubMedCrossRefGoogle Scholar
  2. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91PubMedCrossRefGoogle Scholar
  3. Altschul SF, Gish W, Millaer W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschel T (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedCrossRefGoogle Scholar
  5. Arazi T, Talmor-Neiman M, Sav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterisation of micro-RNAs from moss. Plant J 43:837–848PubMedCrossRefGoogle Scholar
  6. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741PubMedCrossRefGoogle Scholar
  7. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673PubMedCrossRefGoogle Scholar
  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  9. Baumberger N, Baulcombe DC (2005) Arabidopsis. ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933PubMedCrossRefGoogle Scholar
  10. Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516PubMedCrossRefGoogle Scholar
  11. Brown JWS, Smith P, Simpson CG (1996) Arabidopsis. consensus intron sequences. Plant Mol Biol 32:531–535PubMedCrossRefGoogle Scholar
  12. Cardon G, Hohmann S, Klein J, Nettsheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104PubMedCrossRefGoogle Scholar
  13. Chang S, Pryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–117CrossRefGoogle Scholar
  14. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025PubMedCrossRefGoogle Scholar
  15. Chen J, Li WX, Xie D, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA- silencing mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16:1302–1313PubMedCrossRefGoogle Scholar
  16. Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486PubMedCrossRefGoogle Scholar
  17. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111PubMedCrossRefGoogle Scholar
  18. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386PubMedCrossRefGoogle Scholar
  19. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant micro-RNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefGoogle Scholar
  20. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  21. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88PubMedCrossRefGoogle Scholar
  22. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4:205–217PubMedCrossRefGoogle Scholar
  23. Kim J, Jung J-H, Reyes JL, Kim Y-S, Kim S-Y, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua N-H, Park C-M (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94PubMedCrossRefGoogle Scholar
  24. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322PubMedCrossRefGoogle Scholar
  25. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056PubMedCrossRefGoogle Scholar
  26. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203PubMedCrossRefGoogle Scholar
  27. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004a) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046CrossRefGoogle Scholar
  28. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004b) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5. ¢. region. EMBO J 23:3356–3364CrossRefGoogle Scholar
  29. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375PubMedCrossRefGoogle Scholar
  30. Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721PubMedCrossRefGoogle Scholar
  31. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118PubMedCrossRefGoogle Scholar
  32. Navarro L, Dunoyer P, Jay F, Arnold B, Dhamasiri N, Estelle M, Voinett O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science 312:436–439PubMedCrossRefGoogle Scholar
  33. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McCartney S, Nain B, Ross GS, Snowden KC, Soulyere EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedCrossRefGoogle Scholar
  34. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida A, Laufs P (2006) The balance between MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945PubMedCrossRefGoogle Scholar
  35. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefGoogle Scholar
  36. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedCrossRefGoogle Scholar
  37. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520PubMedCrossRefGoogle Scholar
  38. Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects introduced by the enhanced expression of microRNA167. Cell Res 16:457–465PubMedCrossRefGoogle Scholar
  39. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527PubMedCrossRefGoogle Scholar
  40. Sung S-K, Yu G-H, An G (1999) Characterisation of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978PubMedCrossRefGoogle Scholar
  41. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedCrossRefGoogle Scholar
  42. Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411PubMedCrossRefGoogle Scholar
  43. Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedCrossRefGoogle Scholar
  44. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63PubMedCrossRefGoogle Scholar
  45. Vaucheret H, Vazquez F, Crete P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197PubMedCrossRefGoogle Scholar
  46. Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351PubMedGoogle Scholar
  47. Vijayraghavan U, Prasad K, Meyerowitz E (2005) Specification and maintenance of the floral meristem:interaction between positively-acting promoters of flowering and negative regulators. Curr Sci 89:1835–1843Google Scholar
  48. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65PubMedCrossRefGoogle Scholar
  49. Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547PubMedCrossRefGoogle Scholar
  50. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789PubMedCrossRefGoogle Scholar
  51. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138:2145–2154PubMedCrossRefGoogle Scholar
  52. Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterisation of new plant microRNAs using EST analysis. Cell Res 15:336–360PubMedCrossRefGoogle Scholar
  53. Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259PubMedCrossRefGoogle Scholar
  54. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andrew P. Gleave
    • 1
  • Charles Ampomah-Dwamena
    • 1
  • Susann Berthold
    • 1
    • 2
  • Supinya Dejnoprat
    • 1
    • 3
  • Sakuntala Karunairetnam
    • 1
  • Bhawana Nain
    • 1
  • Yen-Yi Wang
    • 1
  • Ross N. Crowhurst
    • 1
  • Robin M. MacDiarmid
    • 1
  1. 1.HortResearch Mount AlbertAuckland Mail CentreAucklandNew Zealand
  2. 2.University of Applied SciencesFreisingGermany
  3. 3.Molecular Medicine and Pathology Department, Faculty of Medical and Health ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations