Advertisement

Tree Genetics & Genomes

, Volume 4, Issue 2, pp 223–236 | Cite as

Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.)

  • V. G. M. Bus
  • D. Chagné
  • H. C. M. Bassett
  • D. Bowatte
  • F. Calenge
  • J.-M. Celton
  • C.-E. Durel
  • M. T. Malone
  • A. Patocchi
  • A. C. Ranatunga
  • E. H. A. Rikkerink
  • D. S. Tustin
  • J. Zhou
  • S. E. Gardiner
Original Paper

Abstract

Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.

Keywords

Malus Eriosoma lanigerum Er Resistance gene Genetic map Genetic markers Woolly apple aphid 

Notes

Acknowledgements

This research was supported in part by grants from ENZAFRUIT New Zealand (International), PREVAR™ and the New Zealand Foundation for Research, Science and Technology. The authors thank Mike Cook and Wendy Legg for their help with leaf collection, DNA preparation and marker analysis.

References

  1. Alspach PA, Bus VGM (1999) Spatial variation of woolly apple aphid (Eriosoma lanigerum, Hausmann) in a genetically diverse apple planting. NZ J Ecol 23:39–44Google Scholar
  2. Alston FH (1977) Practical aspects of breeding for mildew (Podosphaera leucotricha) resistance in apples. In: Proc. Eucarpia Fruit Section Symposium VII, Top Fruit Breeding, Wageningen, 1976, pp 4–13Google Scholar
  3. Alston FH (1983) Progress in transferring mildew (Podosphaera leucotricha) resistance from Malus species to cultivated apple. IOBC/WPRS Bull 6(4):87–95Google Scholar
  4. Alston FH, Briggs JB, Bates JW (1971) Pest resistance. East Malling Report for 1970:95Google Scholar
  5. Alston FH, Phillips KL, Evans KM (2000) A Malus gene list. Acta Hortic 538:561–570Google Scholar
  6. Brown MW, Schmitt JJ (1990) Growth reduction in nonbearing apple trees by woolly apple aphids (Homoptera: Aphididae) population. J Econ Entomol 83:1526–1530Google Scholar
  7. Brown MW, Schmitt JJ, Ranger S, Hogmire HW (1995) Yield reduction in apple trees by edaphic woolly apple aphids (Homoptera: Aphididae) populations. J Econ Entomol 88:126–133Google Scholar
  8. Bus V, Bradley S, Hofstee M, Alspach P, Brewer L, Luby J (2000a) Increasing genetic diversity in apple breeding to improve the durability of pest and disease resistance. Acta Hortic 538:185–190Google Scholar
  9. Bus V, Ranatunga C, Gardiner S, Bassett H, Rikkerink E (2000b) Marker assisted selection for pest and disease resistance in the New Zealand apple breeding programme. Acta Hortic 538:541–547Google Scholar
  10. Bus V, White A, Gardiner S, Weskett R, Ranatunga C, Samy A, Cook M, Rikkerink E (2002) An update on apple scab resistance breeding in New Zealand. Acta Hortic 595:43–47Google Scholar
  11. Bus V, van de Weg WE, Durel CE, Gessler C, Calenge F, Parisi L, Rikkerink E, Gardiner S, Patocchi A, Meulenbroek B, Schouten H, Laurens F (2004) Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hortic 663:57–62Google Scholar
  12. Bus VGM, Laurens FND, Van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in M. pumila R12740-7A. New Phytol 166:1035–1049PubMedCrossRefGoogle Scholar
  13. Calenge F, Faure A, Goerre M, Gebhardt C, Van De Weg WE, Parisi L, Durel C-E (2004) Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379CrossRefGoogle Scholar
  14. Calenge F, Drouet D, Denancé C, Van De Weg WE, Brisset M-N, Paulin J-P, Durel C-E (2005a) Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theor Appl Genet 111:128–135CrossRefGoogle Scholar
  15. Calenge F, Van Der Linden CG, Van De Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel C-E (2005b) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668CrossRefGoogle Scholar
  16. Celton J-M, Rusholme R, Tustin S, Ward S, Ambrose B, Ferguson I, Gardiner S (2006) Genetic mapping of DW1, a locus required for dwarfing of apple scions by ‘M.9’ rootstock. In: Abstract book of the 3rd International Rosaceae Genomics Conference, 19–22 March 2006, Napier, New Zealand, p 39Google Scholar
  17. Crane MB, Greenslade RM, Massee AM, Tydeman HM (1936) Studies on the resistance and immunity of apples to the woolly apple aphid, Eriosoma lanigerum (Hausm.). J Pomol Hortic Sci 14:137–163Google Scholar
  18. Cummins JN, Aldwinckle HS (1983) Breeding apple rootstocks. Plant Breed Rev 1:294–394Google Scholar
  19. Cummins JN, Forsline PL, Mackenzie JD (1981) Woolly apple aphid colonization on Malus cultivars. J Am Soc Hortic Sci 106:26–30Google Scholar
  20. Dozier WA, Latham AJ, Kouskolekas CA, Mayton EL (1971) Susceptibility of certain apple rootstocks to black root rot and woolly apple aphids. HortScience 9:35–36Google Scholar
  21. Dunemann F, Urbanietz A, Gardiner S, Bassett H, Legg W, Rusholme R, Bus V, Ranatunga C (2004) Marker assisted selection for Pl-1 powdery mildew resistance in apple—old markers for a new resistance gene? Acta Hortic 663:757–762Google Scholar
  22. Durel C-E (2006) Genetic localisation of new major and minor pest and disease factors in the apple genome. Rosaceae Genomics Conference 3, Napier, New ZealandGoogle Scholar
  23. Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183PubMedGoogle Scholar
  24. Gambrell FL, Young HC (1950) Habits, rates of infestation and control of woolly apple aphid in nursery plantings. J Econ Entomol 43:463–465Google Scholar
  25. Gao ZS, Van de Weg WE (2006) The Vf gene for scab resistance in apple is linked to sub-lethal genes. Euphytica 151:123–132CrossRefGoogle Scholar
  26. Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS, Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor Appl Genet 93:485–493Google Scholar
  27. Gardiner SE, Bus VG, Chagné D, Ranatunga C, Legg W, Bassett HCM, Zhou J, Cook M, Crowhurst RN, Gleave AP, Rikkerink EHA, Patocchi A, Durel C-E (2006) Mapping of major resistances to woolly apple aphid. In: Plant and Animal Genome Conference XIV, San Diego, CA, USA, 14-18 January 2006. http://www.intl-pag.org/14/abstracts/PAG14_P495.html
  28. Gardiner SE, Bus VGM, Rusholme RL, Chagné D, Rikkerink EHA (2007) Apple. In: Kole C (ed) Genome mapping and molecular breeding, vol. 4. Springer, Heidelberg, pp 1–62Google Scholar
  29. Giliomee JH, Strydom DK, Van Zyl HJ (1968) Northern Spy, Merton and Malling–Merton rootstocks susceptible to woolly aphid, Eriosoma lanigerum, in the Western Cape. South Afr J Agric Sci 11:183–186Google Scholar
  30. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  31. Jancke O (1937) Ueber die Blutlausanfälligkeit von Apfelsorten, wilden Malusarten und—bastarden, sowie die Züchtung blutlausfester Edeläpfel und Unterlagen. Phytopathol Z 10:184–196Google Scholar
  32. King GJ, Alston FH, Battle I, Chevreau E, Gessler C, Janse J, Lindhout P, Manganaris AG, Sansavini S, Schmidt H, Tobutt KR (1991) The ‘European Apple Genome Mapping Project’—developing a strategy for mapping genes coding for agronomic characters in tree species. Euphytica 56:89–94Google Scholar
  33. Knight RL, Alston FH (1968) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Can J Genet Cytol 10:294–298Google Scholar
  34. Knight RL, Briggs JB, Massee AM, Tydeman HN (1962) The inheritance of resistance to woolly aphid, Eriosoma lanigerum (Hausm.), in the apple. J Hortic Sci 37:207–218Google Scholar
  35. Lemoine J, Huberdeau D (1999) Le puceron lanigerère (Eriosoma lanigerum Hausmann), un parasite en recrudescence dans les vergers de pommiers. Arboric Fruit 532:19–26Google Scholar
  36. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241CrossRefGoogle Scholar
  37. Mackenzie JD, Cummins JN (1982) Differentiation of Malus clones into resistance classes by their effects on the biology of Eriosoma lanigerum Hausmn. J Am Soc Hortic Sci 107:737–740Google Scholar
  38. Manganaris AG, Alston FH (1987) Inheritance and linkage relationships of glutamate oxaloacetate transaminase isoenzymes in apple 1. The gene GOT-1, a marker for the S incompatibility locus. Theor Appl Genet 74:154–161CrossRefGoogle Scholar
  39. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  40. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJ, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166PubMedCrossRefGoogle Scholar
  41. Noiton D, Shelbourne CGA (1992) Quantitative genetics in an apple breeding strategy. Euphytica 60:213–219Google Scholar
  42. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993CrossRefGoogle Scholar
  43. Pringle KL, Heunis JM (2001) Woolly apple aphid in South Africa: biology, seasonal cycles, damage and control. Decid Fruit Grow 51(4):22,23,36Google Scholar
  44. Rock G, Zeiger D (1974) Woolly apple aphid infests Malling and Malling–Merton rootstocks in propagation beds in North Carolina. J Econ Entomol 67:137–138Google Scholar
  45. Sandanayaka WRM, Bus VGM, Connolly P, Newcomb R (2003) Characteristics associated with woolly apple aphid Eriosoma lanigerum, resistance of three apple rootstocks. Entomol Exp Appl 109:63–72CrossRefGoogle Scholar
  46. Sandanayaka WRM, Bus VGM, Connolly P (2005) Mechanisms of woolly aphid [Eriosoma lanigerum (Hausmann)] resistance in apple. J Appl Entomol 129:534–541CrossRefGoogle Scholar
  47. Sen Gupta GC, Miles PW (1975) Studies on the susceptibility of varieties of apple to the feeding of two strains of woolly aphis (Homoptera) in relation to the chemical content of the tissues of the host. Aust J Agric Res 26:157–168CrossRefGoogle Scholar
  48. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel C-E, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh) genome. Tree Genetics Genomes 2:202–224CrossRefGoogle Scholar
  49. Speyer W (1924) Über die Blutlausanfälligkeit von Apfelsorten. Angew Bot 6:168–171Google Scholar
  50. Taylor JB (1981) The selection of Aotea apple rootstocks for resistance to woolly aphis and to root canker, a decline and replant disease caused by basidiomycete fungi. NZ J Agric Res 24:373–377Google Scholar
  51. Tobutt KR, Boskovic R, Roche P (2000) Incompatibility and resistance to woolly apple aphid in apple. Plant Breeding 119:65–69CrossRefGoogle Scholar
  52. Wilton J (1998) Woolly apple aphid: don’t turn the clock back 100 years. Orchardist 71(6):11–13Google Scholar
  53. Young E, Rock GC, Zeiger DC, Cummins JN (1982) Infestation of some Malus cultivars by the North Carolina woolly apple aphid biotype. HortScience 17:787–788Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • V. G. M. Bus
    • 1
  • D. Chagné
    • 2
  • H. C. M. Bassett
    • 2
  • D. Bowatte
    • 2
  • F. Calenge
    • 5
  • J.-M. Celton
    • 2
  • C.-E. Durel
    • 5
  • M. T. Malone
    • 1
  • A. Patocchi
    • 6
    • 7
  • A. C. Ranatunga
    • 1
  • E. H. A. Rikkerink
    • 3
  • D. S. Tustin
    • 1
  • J. Zhou
    • 4
  • S. E. Gardiner
    • 2
  1. 1.The Horticulture and Food Research Institute of New Zealand LtdHavelock NorthNew Zealand
  2. 2.HortResearch Palmerston NorthPalmerston NorthNew Zealand
  3. 3.HortResearch Mt AlbertAucklandNew Zealand
  4. 4.School of Resources ManagementSouthwest Forestry CollegeKunmingPeople’s Republic of China
  5. 5.UMR ‘GenHort’ Génétique et Horticulture, INRA Centre d’AngersBeaucouzé cedexFrance
  6. 6.Plant PathologyInstitute of Integrative BiologyZürichSwitzerland
  7. 7.Agroscope Changins–Wädenswil Research Station ACW, Plant Protection, PhytopathologyWädenswilSwitzerland

Personalised recommendations